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ABSTRACT 
Growing use of massive scan data in various engineering 

applications has necessitated research on point-set surfaces. A 
point-set surface is a continuous surface defined directly with 
a set of discrete points. 

This paper presents a new approach that extends our 
earlier work on slicing point-set surfaces into planar contours 
for rapid prototyping usage. This extended approach can 
decompose a point-set surface into slices with guaranteed 
topology. Such topological guarantee stems from the use of 
Morse theory based topological analysis of the slicing 
operation. 

The Morse function for slicing is a height function 
restricted to the point-set surface, an implicitly defined 
moving least-squares (MLS) surface. We introduce a 
Lagrangian multiplier formulation for critical point 
identification from the restricted surface. Integral lines are 
constructed to form Morse-Smale complex and the enhanced 
Reeb graph. This graph is then used to provide seed points for 
forming slicing contours, with the guarantee that the sliced 
model has the same topology as the input point-set surface. 
The extension of this approach to degenerate functions on 
point-set surface is also discussed.  

Keywords: Morse theory, moving least-squares, Reeb graph, 
Morse-Smale complex, slicing 

 

INTRODUCTION 
Growing use of massive scan data in diverse engineering 

applications has necessitated research in efficient and robust 
algorithms for processing scanned data. A point-set surface is 
a computer representation of a continuous surface defined 
directly with a set of discrete points [3][5][19], a canonical 
representation of data output from various 3D scanning 
systems. The moving least-squares (MLS) based point-set 
surfaces are defined implicitly by a projection operator. The 
MLS surface in essence provides a weighted average of data 
points with the weight varying from a target point based on a 

Gaussian function. It has been used in a host of graphics [1] 
and shape modeling [22] applications. We have successfully 
applied the MLS surface in applications such as computer-
aided design [29], rapid prototyping [28], and NC machining 
[30]. 

This paper presents a new approach that extends our 
earlier work on slicing point-set surfaces into planar contours 
for rapid prototyping usage. This extended approach can 
decompose a point-set surface into slices with guaranteed 
topology. The slicing algorithm [28][29] forms the planar 
contour essentially by tracing plane-MLS surface intersection 
points. The tracing is through successive marching along the 
intersection curve. Starting points are required for the 
marching process to avoid any missing loops. Our earlier work 
assumes starting points can be properly found. This paper 
presents a topologically enhanced slicing approach that can 
guarantee the handling of topological events during the 
marching, such as loop merging, splitting, appearance and 
disappearance in each planar contour.  

Such topological guarantee stems from the use of Morse 
theory based topological analysis of the slicing operation. The 
overall approach is shown in Figure 1, where a double torus is 
sliced. The Morse function for slicing is a height function 
restricted to the point-set surface, an implicitly defined MLS 
surface. We introduce a Lagrangian multiplier formulation for 
identification and classification of critical points on such a 
restricted surface. These critical points signal topological 
changes of the intersection curves between slicing planes and 
the point-set surface, including the creation of a new closed 
contour, the merge of two closed contours, the split of a closed 
contour, and the removal of a closed contour. Integral lines are 
constructed to form Morse-Smale complex, from which the 
redundant arcs are then pruned to form an enhanced Reeb 
graph. Such a topological graph provides necessary 
topological information for slicing the point-set surface, 
including the starting points for contour marching, and the 
knowledge of contour appearance and disappearance at 
different heights. The extension of this approach to degenerate 
functions on point-set surface is also discussed. 
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             (a)              (b)                             (c)                                      (d)                                                      (e)                                           (f)   

Figure 1. OVERVIEW OF THE PROPOSED APPROACH. (A) POINT CLOUD. (B) MORSE FUNCTION ON THE MLS SURFACE. (C) CRITICAL POINT 
GENERATION. (D) MORSE-SMALE COMPLEX. (E) ENHANCED REEB GRAPH. (F) SLICED MODEL. THE MAGENTA, GREEN & YELLOW AND 
WHITE DOTS REPRESENT THE MAXIMUM, (TOP AND BOTTOM) SADDLE AND MINIMUM CRITICAL POINTS RESPECTIVELY. FOR DETAILS 
PLEASE REFER TO THE LEGEND SHOWN IN FIUGRE 4. 

 
The novelty of this work includes the following. 

• A Lagrange multiplier approach is developed for 
indentifying critical points, where the Morse function is 
restricted to an implicit moving least-squares (MLS) 
surface. This ensures all critical points of a Morse 
function, under proper sampling conditions, lie on the 
restricted surface (i.e. the MLS surface). To the authors’ 
best knowledge, this is the first reported work on 
extracting critical points of Morse functions on restricted 
surfaces. 

• A method for constructing Morse-Smale complex on the 
MLS surface is presented. Due to the use of analytical 
equations for differential geometrical analysis on the 
MLS surface, it results in efficient and accurate 
construction of the complex. 

• A method for robust intersection of a point-set surface 
with a set of parallel planes through enhanced Reeb graph 
is introduced. It guarantees the sliced model has the same 
topology with the input point-set surface. This enhanced 
Reeb graph is constructed from the Morse-Smale complex 
by pruning the redundant arcs. This use of Reeb graph to 
guide slicing is novel and it contrasts with the typical 
scenarios involving  Reeb graph where the Reeb graph is 
generated from model slicing [17],[26]. 

 

LITERATURE REVIEW 
MLS Surface 

MLS based point-set surfaces have proven to be powerful 
and convenient in point based geometric processing and 
graphics applications [18],[19]. Salient advantages of such 
MLS surfaces include its ability of handling noise, up-
sampling, down-sampling, etc. Moreover, based on a more 
general definition of a projection process [3],[5],[6], a 
mathematical proof of the convergence of the projection 
procedure has been presented [9],[10]. The resulting MLS 
surface is proven to be isotopic to the original sampled surface. 
Analytical equations for directly computing surface curvatures 
from MLS surfaces are available in [27]. 

A method for detecting ridges and valleys has also been 
developed, based on a modified MLS approximation 

technique to estimate the local differential information [16]. 
This method is similar to the one by Ohtake [21] but it gains 
better computation efficiency due to the use of local MLS 
approximation as opposed to the global RBF approximation in 
[21]. However both methods were implemented only on 
triangular meshes and the extracted feature lines are 
disconnected. In our approach, the Morse complex paths are 
connected at critical points and built directly on the continuous 
MLS surface. 

 

Morse Theory 
Morse theory studies how the critical points of a function 

are related to the topological shape of the manifold on which 
the function is defined. Over the past several decades, it has 
become a versatile tool for examining topological features of 
manifolds of interest in a variety of applications. 

Helman and Hesselink [14],[15] proposed methods to 
simplify the visualization of two- and three-dimensional 
vector field topology. Critical points are first identified as loci 
where vector flow vanishes and a group of tangent curves 
connecting the critical points are then used to decompose the 
vector flow to form a simplified representation of the data. 

A theoretical framework of classical Morse theory has 
been extended in [12] to the domain of implicit surfaces; this 
extended Morse theory is useful in detecting the global 
topological characteristics of implicit surfaces and thus very 
desirable for real time manipulation during interactive 
modeling process. However, it does not address critical points 
of constrained Morse functions. 

Critical points sometimes may take other form. 
Algorithms have been developed to compute intersection 
curves of parametric surface with plane sets by using normal 
surfaces and topology transition points; these points function 
quite similarly as critical points. 

Morse theory has also been be extended to discrete 
piecewise linear manifold as well. The underlying triangular 
mesh of the PL manifold carries all the topology information 
to generate hierarchical Morse-Smale complex [11]. 

This paper uses Morse theory to construct Morse-Smale 
complex to generate enhanced Reeb graph for a topologically 
guaranteed slicing. It is worth noting that our Morse-Smale 
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complex is different from that in [11] because it is pre-
completely based on pure point set data without any already 
existing topology information such as polygonized mesh.  

 

TOPOLOGICAL ANALYSIS FOR MORSE FUNCTIONS 
DEFINED ON MLS SURFACES 

In this section, we present the pipeline of the topological 
analysis for Morse functions (i.e. height functions) for slicing 
defined on MLS surfaces. It includes four steps: 1) Critical 
point identification with a Lagrangian multiplier formulation; 
2) Critical point classification with the bordered Hessian; 3) 
Morse-Smale complex construction through a marching 
process along the integral lines and restricted on a MLS 
surface; 4) Enhanced Reeb graph extraction by pruning the 
Morse-Smale complex. 

Introduction of projection based MLS surfaces 
Levin [18],[19] defined an MLS surface M  as the 

stationary set of a projection operator , i.e., Pψ

{ }xxx =∈= )(ψ|3
PRM . (1) 

Such projection based MLS surfaces are referred to as 
projection MLS surfaces. Amenta and Kil [5],[6] further 
proved that the MLS surface M  is actually an implicit surface 
given by the zero-level set of the implicit function 
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where  are normal vectors assigned to each point  of 
an input point set Q  and 
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An example of such an MLS surface and the 
corresponding point cloud of a double torus are shown in 
Figure 1(a) and (b). 

Identification of Critical Points 
In Morse theory, the identification of critical points for a 

given Morse function is the first and key step for topological 
analysis. Giving a smooth Morse function 

, the definition of its critical points is 
quite straight-forward: a point  is a critical point if and 
only if its derivatives vanish: 
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Based on this definition, the problem of critical point 
identification has been addressed by many previous 
researchers [12]. However, suppose the Morse function  is a 
scalar function with a restriction, i.e., 

f

MM ff =:  defined on a 
smooth, compact 2-manifold M . Then identifying its critical 
points becomes more complicated since it has become a 
constrained problem. Some researchers have solved this 
problem for a special case that M is represented by a 
parametrical surface [4]. 

In this section, we introduce a Lagrangian multiplier 
approach for critical point identification, where M is 
represented by an implicit surface, i.e., the MLS surface 
defined by Eqn. (2). In this approach, we adopt height 
functions as the Morse function , which can be represented 
as 

f
CzByAxf ++=)(x . One special case of these height 

functions is zf =)(x , as shown in Figure 1(b). However, the 
method is applicable for other smooth scalar functions, e.g., 
blobby functions introduced in [12]. 

We wish to determine the critical points of the function 
MM ff =: which is the restriction of . For a multiplierf λ , 

we consider the Lagrangian function on the manifold 
( ) 0=≡ xgM , that is, 

( ) ( ) ( )xxx gfL λλ +=, .  

The critical points are obtained by solving the equations  
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 Substituting it into Eqn. (5), we obtain a system of 
equations 
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From Eqn. (6), we observe that, according to the value of 
λ , the critical points of   can be classified into two groups: Mf

1) if 0=λ , then any M∈x  satisfies 0)( =∇ xf  is a 
critical point of , which is also the critical point of the 
Morse function ;  

Mf
f

2) if 0≠λ , then any M∈x  satisfies  
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is a critical point of , which can be comprehended as that 
the gradient of the Morse function  is parallel to the normal 
of the MLS surface. 

Mf
f



In this paper, we term the critical points satisfying the 
first or second condition respectively as the first or second 
kind of critical points. Many previous researchers have 
addressed the problem of identifying the first kind of critical 
points [12]. However, none has explored the issue of 
identifying the second kind of critical points. In the following, 
we will give a two-step procedure to identify the second kind 
of critical points:  

1. Critical point candidate generation: Project each point 
 of the input point set Q onto the MLS surface and 

obtain a point . If 

3Ri ∈q

iq′ εϕ <′)( iq , where ε  is a given small 
positive value. Then classify  as a candidate point and iq′

)( iq′ϕ  is defined by Eqn. (7). Figure 1(c) illustrates the 
distribution of )( iq′ϕ   for the height Morse function on 
the MLS surface. 

2. Critical point refinement: The candidate points 
generated from the first step are located on the input MLS 
surface but, in general, not precisely satisfy Eqn. (6). A 
refinement must be performed by solving the non-linear 
system of Eqn. (6). 

Note the Jacobian matrix of Eqn. (5) over x  can be 
analytically obtained by 
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where  is the Hessian matrix of , which can be 
analytically calculated, since we assume  is at least  
continuous. And  (respectively, ) is the 
gradient vector (respectively, Hessian matrix) of . For 
further expansion of  and , please refer to 
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Once we have obtained the expression of , we can 
solve the non-linear system of Eqn. (

( )xJ
6) using the Gauss-

Newton optimization method [8], where the refined coordinate 
values  can be iteratively calculated by kx
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where k is the iteration number. Figure 2 illustrates an 
example of the critical point refinement process. 

 

 

)(xg

)(xϕ

    
                  (a)                                                          (b)            

Figure 2. CRITICAL POINT REFINEMENT. (A) GENERATION OF 
CRITICAL POINTS (RED DOT) BY REFINING THE CANDIDATE 
POINTS (BLUE CROSS), GEOMETRICAL CONFIGURATION OF 
THE DOUBLE TORUS SURFACE AND A SLICING PLANE PASSING 
A CRITICAL POINT. (B) DISTRIBUTION OF )(xϕ AND  ON 
THIS SLICING PLANE AND THE REFINEMENT PROCESS FROM A 
CANDIDATE POINT (YELLOW DOT) TO THE CRITICAL POINT 
(MAGENTA STAR). 

)(xg

 

Classification of Critical Points 
To determine the types of a critical point x  of the 

function MM ff = , we use the number of negative 

eigenvalues of the Hessian matrix ( )( xH Mf )  [12], [20]. The 
relationship between the type of critical points and the sign of 
eigenvalues of the Hessian matrix is given in Table 1. Let the 
two eigenvalues of ( )( )xH Mf  be 21 λλ ≤ , then the number of 
negative eigenvalues of  is the index of a critical 
point. A critical point of index 0, 1 or 2 is called a minimum, 
saddle, or maximum, respectively. 

( )( xH Mf )

Table 1. THE RELATIONSHIP BETWEEN TYPE OF CRITICAL 
POINTS AND SIGN OF EIGENVALUES. 

21 λλ ≤ )Sign of Eigenvalues ( Matrix 
signature Type of critical point  

1λ 2λ  

- - -2 Maximum (Index-2) 
- + 0 Saddle (Index-1) 
+ + 2 Minimum (Index-0) 

 

The Hessian matrix is not easy to calculate 
directly for a scalar function constrained on another implicit 
surface. However, the Hessian matrix 

( )( pH Mf )

( )( pH Mf )  has the same 
signature as ( )λ,pHL  [13]; the latter is the bordered Hessian 
matrix of the Lagrange function L  at the critical point ),( λp  
and it is defined as  
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where λ  is the Lagrangian multiplier,  and 
are the gradient and Hessian matrix of . 

)(xg∇ , (11) ( )(xH g ) )(xg

Meanwhile, depending on the sign of λ , the saddle points 
can be categorized into two subtypes: if 

( )( )tg c∇( )( )tf c∇  and where  are respectively the gradient of 
Morse function  and implicit MLS surface function 1)sgn( =λ , then the 

saddle point is a top saddle; if 
f g . The 

above initial value problem can be solved by the forth/fifth 
order Runge-Kutta-Fehlberg method with an adaptive step size, 
which helps to balance the computational efficiency and 
accuracy.  

1)sgn( −=λ , then the saddle 
point is a bottom saddle. The basic relationship between the 
four types of critical points (maximum, top saddle, bottom 
saddle and minimum) and the topology change when a 
sectioning plane moves up through a critical point is given in 
Table 2. The initial position of this algorithm is given by 

perturbing the source saddle point along the direction 
determined by the eigenvectors of the Hessian matrix of , 
which is defined as 

MfTable 2. THE RELATIONSHIP BETWEEN CRITICAL POINT TYPE 
AND TOPOLOGY CHANGE. 

Critical 
point type 

Topology at 
critical point 

Topology 
change 

Number of 
contours 

Graphical 
illustration ( )( ) ⎥

⎦

⎤
⎢
⎣
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−=

vvuv

uvuu

w

w
M gg

gg
g
fvuwvufH ),(,, , 

Removal of a 
closed 
contour 

( )Twvu ,,where is a coordinate under a local coordinate 
system defined by the tangent plane T  of the MLS surface at 
point 

Maximum An isolated point -1 

( )tcp = , fw, gw, guu, gvv, and guv are local spatial 
derivatives. These spatial derivatives can be obtained 
analytically through a coordinate transformation of the 
derivatives 

 

A self-
intersection of 

the contour 

Merge of two 
closed 

contours 

Top 
saddle -1 ( ))(xH g and  [27]. )(xg∇

 Then the Runge-Kutta-Fehlberg method iteratively 
calculates the next point on the integral line with an adaptive 
step size until it reaches a maximum/minimum critical point 
within a certain threshold. 

A self-
intersection of 

the contour 

Split of a 
closed 
contour 

Bottom 
saddle +1 

Generation of Enhanced Reeb Graph 
A standard Reeb graph is a graphical representation of the 

connectivity of an object between critical points Creation of a 
new closed 

contour 
[25]. More 

specifically, for a Morse function , the Reeb graph 
Minimum An isolated point +1 

( )EVG ,Mf  
is defined as a graph whose nodes V are the critical points of 

 and whose arcs E are connected components of the level 
sets of . However, this standard Reeb graph contains only 
topological information and all geometrical relationships are 
lost. In this paper, we extend the standard Reeb graph by 
assign additional geometrical information to the nodes V and 
the arcs E: for a node 

 
 

Mf
Construction of Morse-Smale Complex 

Mf
After the identification and classification of the critical 

points, these points will be linked to form a Morse-Smale 
complex. The connection of critical points can start from any 
saddle point by building two steepest ascending integral lines 
and two steepest descending integral lines. A steepest 
ascending integral line is generated by tracing steepest 
ascending directions until it approaches a maximum critical 
point; Reversely, a steepest descending integral line is 
generated by tracing steepest descending directions until it 
approaches a minimum critical point.  

Vvi ∈ , we replace it with , i.e., the 
3D coordinate of the corresponding critical point; for an arc 

ip

( ) Evv ji ∈, , we replace it with a polyline, whose endpoints are 
 and  and middle points are generated by integrating 

Eqn. (
ip jp

10) with an initial step from . This attached 
geometrical information will later be used to help generate 
slicing contours robustly and efficiently. A comparison of the 
standard and the enhanced Reeb graphs are shown in Figure 

ip

In this section, we apply the Runge-Kutta-Fehlberg 
method 

5 

[24] to trace along an integral line , which is 
defined as a maximal path in 

( ) Mt ⊂c
1(e), which illustrates that the enhanced Reeb graph is a Reeb 
graph associated with its projection onto the MLS surface. 

M  whose tangent vectors agree 
with the gradient of  at every point of the path:  Mf

 
( ) ( )( )tft M cc ∇=′ . (10) 

 
where  

 



 A minimum creates a new closed contour. Therefore, 
there is only one upward arc. 

Based on the above four principles, we have the following 
strategy in generating an enhanced Reeb graph from the 
Morse-Smale complex. We first sort all the critical points 
according to their heights. Then we process them from the 
highest point to the lowest points according to the following 
three rules: 1) Maximum or bottom saddle: if it has more than 
one downward arcs, we keep the arc between this critical point 
and its nearest, lower neighbors (we term it adjacent point), 
which has the closest, lower height value to the critical point. 
And prune the other arcs by trimming them at the height of the 
adjacent point and re-linking them to it, as shown in Figure 

 
                                                       (a)                                  

3 
(a); 2) Top saddle: we first classify all its lower neighbors into 
two groups. This is achieved with the aim of the intersection 
regions of this top saddle, which is defined as a set of points 

{ }topcc SgA ∈<<−= qqq Iεε )(| , where cε  is a small 
positive value and  is the slicing plane that contains the top 
saddle. This region (set A) is further divided into two sub-
regions, i.e.,  

topS
  

                                                           (b)                                  
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qnvpqq
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I

I

0|
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where  represents the top saddle point,  is the 
maximum ascending direction of  and n  is the normal of 
the slicing plane . Then these two sub-regions are used to 
classify the lower neighbors: if an arc intersects  (resp., 

r ), we insert the corresponding neighboring point into Group 
One (resp., Group Two), as shown in Figure 

maxvtopp

topp

topS

lA 
A                                                       (c)                                  

3(c). After we 
finish the grouping process,  we apply the same pruning 
procedure as described in rule #1 for each of these two groups, 
as shown in Figure 

Figure 3. RULES OF GENERATING AN ENHANCED REEB GRAPH 
FROM THE MORSE-SMALE COMPLEX. (A) RULE #1 FOR 
MAXIMUM AND BOTTOM SADDLE. (B) RULE #2 FOR TOP 
SADDLE. (C) GROUPING THE LOWER NEIGHBOR POINTS IN 
RULE #2. 

3 (b); 3) Minimum: we just remove all 
downward arcs.  

  
As an inverse of the traditional Reeb graph generation 

method where the Reeb graph is generated from model slicing, 
we create an enhanced Reeb graph from the Morse-Smale 
complex by pruning the redundant arcs and then use it to guide 
the slicing process. Before we address the key challenges in 
the pruning operation for enhanced Reeb graph generation, let 
us first re-examine Table 2, where we find that the number 
and the types of arcs for each node of the Reeb graph are 
determined by the types of the critical point:  

 A maximum point makes a closed contour collapse. 
Therefore, in the Reeb graph, there is only one 
downward arc that links this maximum point with 
another lower critical point. 

 A top saddle point makes two closed contours merge 
into one. Therefore, there are two downward arcs and 
one upward arc that link this top saddle point with 
another higher critical point. 

 A bottom saddle point makes a closed contour split 
into two contours. Therefore, there are one downward 
arc and two upward arcs. 
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1bc 2bc
1bd 2bd1be 2be

1ab

1bc 2bc

1cd 2cd1ce 2ce

where  is the normal of the slicing plane and  is the 
normal of MLS surface . Rotating  by a right angle on the 
slicing plane gives the step length direction at each slice. It 
is actually the tangent vector at the surface point and it guides 
marching step to the next contour point. At critical points 
location ( ,

Hn Sn
S Pn

Pt

 in Figure 5E F ), both  and  vanish as shown 
in Figure 

Pn Pt
5(c) and marching suddenly loses the guiding 

direction, causing marching to fail. 

 
(a)                              (b)                                     (c) 

Figure 5: MARCHING BASED SLICING (A) MARCHING NORMAL 
DIRECTION  AND SURFACE NORMAL . (B) SLICING AT 
HEIGHT OF TORUS’ SADDLE (C) MARCHING NORMAL 
DISTRIBUTION AND CONTOUR MERGING AT SADDLE 

Pn Sn  

Figure 4. ILLUSTRATION OF THE GENERATION OF AN ENHANCED 
REEB GRAPH FROM THE MORSE-SMALE COMPLEX WITH THE 
EXAMPLE OF DOUBLE TORUS. The new topologically enhanced algorithm works as 

follows. First, seed points ( ,  in Figure N 5M (c)) far away 
from saddle P  are chosen as marching starting points. 
Merging sub-contours generated by marching clockwise and 
counterclockwise from each seed point then yields each 
contour. This modified marching will naturally stop when it 
reaches sufficiently close to a non-degenerate critical point on 
the slicing plane. 

Figure 4 illustrates the generation of an enhanced Reeb 
graph from the Morse-Smale complex with a double torus. 
From Figure 4, we can see that before pruning critical point a, 
it has eight arcs linked with the four saddle points b, c, d and 
e. Since a is a maximum point, we apply the rule #1 for 
pruning. And in the resulting graph, point a has only one arc As for degenerate region, however, sub-contours will not 

meet to form each contour loop because degenerate regions 
are essentially composed of spatially adjacent critical points 
that are not isolated. The contour gap between the sub-contour 
ending points should be filled based on the boundary of the 
degenerate region; this will be discussed in the later section. 

1ab  and the other arcs are so trimmed that they are now only 
connected to critical point b. That is, point b has six arcs, , 1bc

2bc 1bd 2bd 1be 2be, , , and . For the top saddle point b, we 
apply the rule #2 for pruning: we first group the six arcs into 
two sets: { }111 ,, bebdbc { }222 ,, bebdbc and . For each of these 
two groups, we perform the pruning operation. Then we get 
only two arcs for point b, i.e., 

In this paper, our new slicing algorithm extends the 
original one in [28],[29] via the following topological 
enhancements. , 1bc 2bc  and point c will have 

four arcs 1cd 2cd 1ce 2ce, , and . Keeping processing all the 
critical points from a to f similarly, we will finally obtain the 
enhanced Reeb graph as shown in Figure 

 The seed points for contour marching are determined by 
intersecting all the integral lines of the extended Reeb 
graph with the slicing plane.  

4.  

 
 The topology of the MLS surface is guaranteed to be 

preserved in the sliced contours under adequate sampling, 
that is, the MLS-represented feature size is greater than 
the maximum point spacing of point-cloud data. 

TOPOLOGICALLY ENHANCED SLICING 
ALGORITHM 

Intersection contours are generated by marching. 
Therefore, when the intersecting plane contains critical points, 
we should make the marching algorithm topology-aware so as 
to avoid marching failure and obtain the correct contour.  

 The number of contours can also be derived from 
intersecting enhanced Reeb graph with the slicing plane. 
Here we give a formula that not only checks the validity 
of the generated Reeb graph but also computes the 
number of contours at a specific height. We define 
contour topology characteristic as: 

7 

Our original marching algorithm discussed in [28], [29] 
cannot handle this robustly. It requires a marching normal 
direction  determined by: Pn

, mSSMz TB −−+=)(ς
. )( HSHP nnnn ××=



where M , ,  and m  is the number of maximum, bottom 
saddle, top saddle and minimum entities that lie below the 
current height value 

BS TS
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z . This formula comes from the topology 
changes listed in Table 2.   

 

IMPLEMENTATION AND EXAMPLES 
We have implemented the above algorithms, including 

critical points and integral line extractions, Morse-Smale 
complex and enhanced Reeb graph construction, and 
topologically enhanced slicing algorithm with Matlab. 
Examples are presented below to illustrate and validate the 
proposed approach. 

 

Enhanced Reeb Graph Generation 
In this section, we present three examples performed with 

the enhanced Reeb graph generation algorithm described 
previously. In the first example, the input data is sampled from 
a knot surface, which contains 90,000 points, as shown in 
Figure 6 (a). In Figure 6 (b), nine critical points are identified 
and classified: three magenta balls represent the maximum 
critical points, six green & yellow balls represent the (top and 
bottom) saddle points and three white balls represent the 
minimum critical points. Meanwhile, the ascending integral 
lines (red curves in Figure 6 (b)) and descending integral lines 
(blue curves in Figure 6 (b)) are generated and used to setup 
the Morse-Smale complex. Figure 6 (c) illustrates the resulting 
enhanced Reeb graph, where the red and blue integral lines are 
pruned to form magenta arcs. The second example (the second 
row of Figure 6) is sampled from a mechanical part with 
66,477 points, which demonstrates the ability of our approach 
in handling models with sharp corners. The third example is a 
fertility sculpture from AIM@SHAPE, which contains 98,602 
points, as shown in Figure 6 (g). The results shown in Figure 6 
(h) and (i) demonstrates the robustness of our algorithms in 
handling noisy, real data. 

 

  
           (a)                                (b)                                (c)  

   
   (d)                                (e)                                (f)  

      
               (g)                                (h)                                (i)  

Figure 6. ENHANCED REEB GRAPH GENERATION FOR THREE 
EXAMPLES: A KNOT SURFACE IN THE FIRST ROW, A 
MECHANICAL PART IN THE SECOND ROW AND A REAL 
SCULPTURE DATA IN THE THIRD ROW. IN EACH OF THESE 
THREE ROWS, THE FIRST COLUMN SHOWS THE 
CORRESPONDING INPUT POINT DATA, THE SECOND COLUMN 
SHOWS THE RESULTING MORSE-SMALE COMPLEX AND THE 
THIRD COLUMN SHOWS THE RESULTING ENHANCED REEB 
GRAPH.  

 

Topologically Enhanced Slicing 
With the above generated enhanced Reeb graphs, we can 

further extract slicing data of these three models by applying 
the topologically enhanced slicing algorithm. In comparing 
with the original algorithm, this algorithm is more robust and 
capable of handling various models, as shown in Figure 7. 

              
                  (a)                                   (b)                         (c)  

Figure 7. TOPOLOGY ENHANCED SLICING FOR THREE 
EXAMPLES. (A) THE KNOT SURFACE. (B) THE MECHANICAL 
PART WITH SHARP CORNERS. (C) THE REAL SCULPTURE DATA 
WITH NOISE AND HOLES. 

 

For a detailed illustration of the topological robustness for 
our slicing algorithm, we use a knot surface model as an 
example and examine two specific slices, i.e., 0.0=z  and 

83.1=z , as shown in Figure 8(a). For better illustration of the 
sliced data, we adopt the top views of these two slices, as 
shown in Figure 8(b) and (c), where the red dot points with 
grey lines represent the output 2D contours. These two slices 
are generated by two different plane/MLS surface intersection 
algorithms: 1) the slice at , as shown in 0.0=z Figure 8(b), 
contains no critical points and thus the original marching 
based algorithm [28], [29] is applied to get the contours. Note 
that the six blue points in Figure 8(b) represent the initial 
points used to find the starting points for the marching process, 
which are captured by intersecting the enhanced Reeb graph 
with the slicing plane 0.0=z . In comparison with the method 
introduced in [28], [29], the topologically enhanced method 
has the following advantages: no prescribed value ε  is 
necessary, the number of initial points drops dramatically and 
all the contours are guaranteed to be found. 2) the slice at 



We examined this noisy and unevenly distributed data at a 
specific slice, i.e., 

83.1=z , as shown in Figure 8(c), contains one saddle point 
(the green & yellow ball), where two contours are merging 
with each other. Thus the initial points for these two merging 
contours are chosen to be away from the saddle, while the 
initial points for the other three contours are determined by 
intersecting the enhanced Reeb graph with the slicing plane 

, as shown in 

83.1=z , as shown in Figure 10(a), where 
the red lines represent the output contours, the blue line 
represents the nominal contour and the green cross points 
represent the input data points with intensity fading away 
when they are farther away from the slicing plane. For better 
illustrating the quality of the generated slice, we showed a 
zoom-in of the left-most contour as well as the corresponding 
nominal contour in 

83.1=z Figure 8(c). The finial sliced model is 
illustrated in Figure 7(a) 

Figure 10(b) and plot the distance (error) 
between these two contours as a quantitative description of the 
data quality in 

0.0=z

83.1=z

Figure 10(c). In Figure 11(c), we find that the 
maximum error is smaller than the given standard deviation of 
the noise, i.e., 0.1, which reveals the de-noising ability of our 
algorithm. Meanwhile, the uneven distribution of the noise is 
properly handled. For the sake of simplicity, in this paper, we 
keep the Gaussian factor h constant, even though adaptive 
choice of h, e.g. through the scheme in [23] would likely lead 
to more accurate surface estimates. 
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                                   (a)                                               

   
                    (b)                                            (c)   

Figure 8. TOPOLOGY ENHANCED SLICING FOR THE KNOT 
SURFACE. (A) ISO-VIEW OF THE KNOT DATA WITH INTEGRAL 
LINES.  (B) TOP VIEW OF THE SLICE AT . (C) TOP VIEW 
OF THE SLICE AT . 

0.0=z
83.1=z

 

Noisy and Unevenly Distributed Point Sets 
To validate the robustness of our method in handling 

noisy and unevenly distributed point sets, we add varying 
levels of synthetic noise onto the nominal knot surface, as 
shown in Figure 9. For a better illustration of the varying noise, 
we pick a typical normal section of the nominal knot surface 
and the corresponding noisy point data, as shown in Figure 
9(c). From the bottom to the top of this circular section, the 
standard deviation of the noise changes from 0 to 0.1.  

    
                  (a)                                (b)                                (c)  

Figure 9. Synthetic noise data sampled from the knot surface. (a) 
point cloud. (b) rendered triangluar mesh model. (c) a typtical 
circular section with a varying levels of noises (standard 
deviation from 0 to 0.1). 

    
            (a)                                                    (b)   

         
                                        (c)                

Figure 10. TOPOLOGY ENHANCED SLICING FOR THE NOISY 
UNEVENLY DISTRIBUTED DATA. (A) TOP VIEW OF THE SLICE AT 

83.1=z .  (B) ZOOM-IN OF (A). (C) DISTANCE BETWEEN THE 
SLICED POINTS IN (B) AND THE NOMINAL MODEL. 

 

SLICING UNDER DEGENERACY 
The aforementioned algorithms have been demonstrated 

to be able to slice various point-set surfaces with non-
degenerate critical points. We now show that the algorithms 
for Reeb graph construction and slicing can be extended to 
degenerate cases. 

Identify Degenerate Region 
Degenerate regions can be identified by clustering 

spatially adjacent critical points; they can be classified into 
degenerate maximum, minimum and saddle if we treat the 
region like a point. Related concepts such as rings, wedges in 
[7] could also be easily extended from non-degenerate critical 



points to degenerate regions. Figure 11 shows three types of 
degenerate regions along with their wedges of a degenerate 
torus. 
 

 
                      (a)                                (b)                                (c)  
Figure 12:  (a) SADDLE NODE DETERMINATION. (b) 
SADDLE NODES AND WEDGE NODES. (c) 
GENERATED COMPLEX. 

  
When Slicing Plane contains Degenerate Region Figure 11: DEGENERATE TORUS AND ITS DEGENERATE 

MAXIMUM, MINIMUM and SADDLE  
The slicing algorithm is modified when slicing plane 

contains degenerate regions. If a degenerate maximum is being 
sliced, we do nothing and move on to next layer. If a 
degenerate minimum is being sliced, we use its boundary as 
contour points for the slices. If a degenerate saddle is being 
sliced, part of its region boundary associated with the upper or 
lower wedge will be used along with sub-contours generated 
by marching to form a closed contour loop. 

 

If every degenerate region (degenerate type, region 
boundary) is well-defined and ascending and descending 
integral lines from degenerate saddles are known, then Morse-
Smale complex and extended Reeb Graph could be readily 
constructed for slicing. 

If this information of the degenerate region is not 
available, we provide a heuristic method as follows. 
Comparing the height values of regional wedges and the 
region itself reveals the degenerate type. Tracing integral lines 
from its wedge back to the height of region could outline the 
region boundary. Ascending and descending integral lines 
emanating from degenerate regions could be determined by 
locating saddle node and wedge node on region boundary as 
shown in Figure 

Slicing Results of Degenerate Models  
13Figure (a) is a point-set (48.8K points) that contains a 

degenerate monkey saddle (multiplicity=2) in the middle. Its 
three ascending and three descending integral lines lead to the 
three degenerate maxima and one degenerate minimum 
respectively. Fertility Sculpture (58.2K points) in Figure 13(e) 
contains a degenerate saddle and a degenerate minimum at the 
base. As for many mechanical parts, degenerate regions may 
take the form of lines, which can also be treated like region. 
Using this technique, the Block part (62.8K points) contains 
two cross shape degenerate dog saddles (multiplicity=3), a 
maximum and a minimum. These examples demonstrate that 
our topologically enhanced slicing algorithm is applicable to 
degenerate model, even for those with high multiplicity. 

12. Integral line that traces from saddle node 
to wedge node travels the shortest distance between region 
height  and a prescribed height  very close to ; this 
ensures the obtained integral lines follow the steepest 
ascending or descending directions. 

1h0h 0h
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                                                  (a)                                               (b)                                           (c)                                            (d) 

                   
                                                 (e)                                               (f)                                           (g)                                            (h) 
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                                              (i)                                               (j)                                           (k)                                            (l) 
Figure 13: POINT CLOUD, MORSE COMPLEX AND REEB GRAPH AND SLIDED MODEL OF MONKEY SADDLE POINT-SET (48.8K POINTS), 
FERTILITY (58.2K POINTS) AND MECHANICAL BLOCK (62.8K POINTS). 

 

[4] Acar, E. U., Choset, H., Rizzi, A. A., Atkar, P., Hull, D., 
2002, “Morse decompositions for coverage tasks,” 
International Journal of Robotics Research, 21(4), pp. 
331-344. 

CONCLUSION 
In this paper, we have presented an approach for slicing 

point-set surfaces with topological guarantee. This is done 
through the analysis of a height Morse function restricted to an 
implicitly defined MLS surface. The critical points are 
obtained from the Lagrangian multiplier method. Morse-
Smale complexes are constructed, from which the Reeb graph 
is built. The enhanced Reeb graph provides the seed point for 
contour marching in slicing and the information at topological 
transition locations. The slicing method has also been 
extended to degenerate cases.  

[5] Amenta, N., Kil, Y. J., 2004, “Defining point-set 
surfaces,” ACM Transactions on Graphics, 23(3), pp. 
264-270. 

[6] Amenta, N., Kil, Y. J., 2004, “The domain of a point set 
surface,” Proceedings of 2004 IEEE/Eurographics 
Symposium on Point-based Graphics, pp. 139-147. 

[7] Banchoff, T. F., 1970, “Critical points and curvature for 
embedded polyhedral surfaces,” Am. Math. Monthly 77, 
pp. 475-485. The Lagrangian multiplier method and the associated 

bordered Hessian have proved to be useful in identifying 
critical points of Morse functions restricted to the point-set 
surface. Other Morse functions such as blobby 

[8] Coleman, T. F., Li, Y., 1993, “An interior trust region 
approach for nonlinear minimization subject to bounds,” 
Technical Report, Ithaca, NY, USA. [12] or 

curvature functions can also be used. Even though the 
constraint surface used in this paper is the MLS surface, other 
forms of implicit surfaces can also be used. 

[9] Dey, T. K., Sun, J., 2005, “Adaptive MLS surfaces for 
reconstruction with guarantees,” Proceedings of 
Eurographics Symposium on Geometry Processing, pp. 
43-52. 

The resulting Morse-Smale complex, enhanced Reeb 
graph, and the sliced model can be used in applications such 
as computer-aided design, rapid prototyping and shape 
understanding. 

[10] Dey, T. K., Goswami, S., Sun, J., 2005, “Extremal 
surface based projections converge and reconstruct with 
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