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ABSTRACT

This dissertation proposes an e�cient optimization approach for obtaining

shape correspondence across a group of objects for statistical shape modeling. With

each shape represented in a B-spline based parametric form, the correspondence across

the shape population is cast as an issue of seeking a reparametrization for each shape

so that a quality measure of the resulting shape correspondence across the group is

optimized. The quality measure is the description length of covariance matrix of the

shape population, with landmarks sampled on each shape. The movement of land-

marks on each B-spline shape is controlled by the reparameterization of the B-spline

shape. The reparameterization itself is also represented with B-splines and B-spline

coe�cients are used as optimization parameters. We have developed formulations

for ensuring the bijectivity of the reparameterization. A gradient-based optimiza-

tion approach is developed, including techniques such as constraint aggregation and

adjoint senstivity for e�cient, direct di↵eomorphic reparameterization of landmarks

to improve the group-wise shape correspondence. Numerical experiments on both

synthetic and real 2D and 3D data sets demonstrate the e�ciency and e↵ectiveness

of the proposed approach.
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CHAPTER 1

INTRODUCTION

1.1 Introduction

Statistical shape model (SSM) provides a compact characterization of the shape

variability in a set of shapes. It was initially used as a tool for facilitating automatic

image segmentation [1, 2]. It has since seen many other applications including facial

recognition [3], computer animation [4], medical diagnosis [5, 6] and patient-specific

modeling [7, 8, 9, 10], to name but a few. Finding shape correspondence across

all shape instances is a fundamental task in building SSM, and the quality of shape

correspondence directly a↵ects the quality of the resulting SSM. Manual identification

of landmarks is e↵ective under some circumstances but in general is not a reliable

strategy since it tends to be subjective, time-consuming, error prone, and di�cult

to be applied in large scale data sets [11]. Consequently, methods for automatically

identifying the shape correspondence have been a major research focus in the field.

The automatic identification of the shape correspondence across a set of ob-

jects can be achieved by either “template-based” or “population-based” correspon-

dence optimization. The former finds one by one the pairwise correspondence between

a pre-selected template shape and each shape instance in the training set, and the

found pairwise correspondences are then propagated through the common template

reference to form the group-wise correspondence; the latter seeks to directly find the

groupwise correspondence across all shape instances simultaneously. The SSM qual-

ity of the template-based approach is inherently subject to bias from the template

selection, whereas the population-based approach considers the entire training set and

tends to give more reliable SSMs. Generally both template-based and population-

based approaches search correspondence by formulating it as an optimization problem

and minimizing a certain objective function. Various correspondence search tech-
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niques have been compared and analyzed in [12]. The pairwise search usually reduces

to a problem where a “similarity” measure between the template and each shape

instance is minimized and some regularization constraints are satisfied. Typically

such measure is related to geometric descriptors such as spatial distance and shape

feature, and the optimization is essentially a rigid or non-rigid registration problem

[13, 14, 15, 16]. The population based search directly optimizes a quality measure of

the statistical model obtained from all the instances. During the past few years, SSM

quality measures have evolved from the model covariance trace [17], to the model co-

variance determinant [18], and finally to the Description Length(DL) [19, 20, 21] and

its simplification [22] or variants [23]. This information theoretic objective function of

description length has shown to be an e↵ective measure [19] for the population-based

correspondence optimization.

Although the population-based approach to shape correspondence does not

require the pre-selection of a template and tends to provide a more faithful character-

ization of the variability pattern, this approach is still far from being widely used to

build SSMs due to its low e�ciency in identifying optimal correspondence across the

shape population. In the minimum description length based group-wise correspon-

dence optimization approach originated in [19], the group-wise shape correspondence

search consists of successive small-scale optimizations, each of which uses only a few

optimization variables to relocate landmarks in a local region of each shape instance.

In each optimization, only landmarks in local regions are moved. This necessitates

a huge number of successive optimizations to manipulate all the landmarks, thus

leading to ine�ciency. Some researchers use analytical gradient formula whenever

possible to speed up the gradient evaluation [24, 25]. However, in these implemen-

tations, the landmark positions in the training set shapes are non-di↵erentiable with

respect to optimization variables, the gradients are thus only partially analytical. In

[26], spline representation of 2D shapes is proposed so a full analytical gradient of
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reparameterization can be derived.

In our proposed approach, we cast shape correspondence as an issue of seeking

optimal reparameterization D(u) of the parametric field u of each shape so that a

quality measure f of the resulting shape correspondence across a group of objects is

optimized. The reparameterization is applied to the parametric domain of parame-

terized curves or surfaces. Our SSM is based on the point-distribution model [27]. In

our approach, each landmark point S(u) in a given shape is changed to S (D(u)) in

order to improve correspondence via the reparameterizationD(u). Our approach thus

requires the parameterization of each shape, that is, every point x of the shape in the

physical space is mapped to a point u in the parametric domain. In our implemen-

tation, we choose the B-spline representation S(u) of each shape instance, which can

be reconstructed from triangular mesh representation of 3D objects. The parametric

domain then undergoes a reparameterization represented via another tensor-product

B-spline D(u) with B-spline coe�cients b as the optimization parameters. We choose

the description length as the objective function of the shape correspondence.

Figure 1.1 illustrates the proposed idea. A group of hand contours are shown

in Figure 1.1(a). Each shape is represented with B-splines, and Figure 1.1(b) shows

such a B-spline representation for one shape with control points and knots. Initially

landmarks are uniformly sampled over the parameter domain of the B-spline shape

S(u) as shown in Figure 1.1(c). To change the landmark positions, reparameterization

D(u) is applied to the parameter domain of each B-spline shape. This reparameteri-

zation is also represented with B-splines as shown in in Figure 1.1(d) where each red

point represents a B-spline coe�cient for the reparameterization. The landmarks are

redistributed as shown in Figure 1.1(e) after the reparametrization. The landmark

redistribution can be seen from the four highlighted landmarks, where a, b, c, d moved

to A,B,C,D respectively over the other side of the finger tips.
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(a) A set of shapes
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(b) B-spline representation S(u)
of each shape

a

b

c

d

(c) Landmarks sampled on
S(u)

0 10

1

u

D
(u

)

 

 

a

A

b

B

c

C

d

D

D(u)
{bi}

(d) Reparmeterization function
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(e) Landmarks S(D(u)) after
reparameterization

Figure 1.1. Landmark manipulation by reparameterization for improving shape cor-
respondence in statistical shape modeling.
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The salient feature of this approach is as follows

• Di↵eomorphic deformation through B-splines. The reparametrization could be

achieved by concatenating a seres of simple homeomorphic mappings as in [21].

One optimization run with this reparametrization technique leads to the de-

formation of a local parametric region cannot provide any information on the

search direction for subsequent optimizations. Therefore it requires the concate-

nation of a large number of simple mappings and causes severe ine�ciency (See

Section 5.1). Instead of concatenation, we propose the use of single B-spline

functions to directly represent the di↵eomorphic reparameterization D(u) for

the parameterization u of each shape instance S(u). The parametric field is

reparameterized with B-spline functions D(u) where injectivity for the repa-

rameterization is guaranteed by enforcing the Jacobian positivity constraint.

• Full di↵erentiability of the objective function f (i.e. description length) with

respect to reparameterization variables b. The objective function f (i.e. de-

scription length) is a function of landmark positions. The landmark positions

in each shape are di↵erentiable with respect to reparameterization parameters

b due to the parametric representation S(u) of each shape and di↵eomorphic

reparameterization D(u). This ensures that the description length is fully dif-

ferentiable with respect to the reparameterization variables b.

The direct di↵eomorphic reparameterization based formulation for SSM leads

to an optimization problem with a large number of constraints (for enforcing the

injectivity of reparametrization) and a large number of optimization variables (i.e.

B-spline coe�cients for reparameterization). Due to the full di↵erentiability of the

objective function f (i.e. description length) with respect to reparameterization vari-

ables b, a gradient-based optimization approach can be developed to ensure fast

convergence. More specifically, the following optimization techniques are developed.
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• Constraint aggregation. The B-spline based di↵eomorphic reparameterization

leads to a large number of constraints on Jacobians for ensuring the mapping is

bijective. In order to facilitate fast convergence in gradient-based optimization,

a constraint aggregation technique is used where the large number of constraints

are aggregated into one or a few constraints.

• Adjoint method for computing sensitivity. The adjoint approach is used to com-

pute the sensitivity of the objective function with respect to reparameterization

parameters b, which is more e�cient than direct di↵erentiation of the objec-

tive function f . In computing the sensitivity of the description length w.r.t.

optimization variables b, eigenvalues of the covariance matrix and their deriva-

tives are needed. Since each eigen analysis is expensive, the adjoint method

is thus especially e�cient for computing the sensitivity in this kind of opti-

mization problems that have larger number of optimization variables and fewer

functions (after constraint aggregation). In this adjoint method, the derivatives

of a function w.r.t. a large number of optimization variables only involves one

eigen analysis of the covariance matrix. On the other hand, in the direct dif-

ferentiation method, the number of eigen analysis is the same as the number of

optimization variables.

1.2 Background on SSM and covariance matrix

Previously we have pointed out the research motivation for the ultimate goal

of building statistical models, and briefly described the basic idea of the proposed

method. In order for a rigorous discussion, we lay out the necessary mathematical

contexts that are already known to the community. More specifically, the detailed

computing procedures of statistical shape modeling will be presented, and two types

of covariance matrix formulations will be identified with both the discrete and con-

tinuous shape representations.
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1.2.1 Background on statistical shape modeling. Statistical Shape Model

was initially called Point Distrubition Model (PDM) [27], and it requires each shape

instance in the training set be represented by a set of points, known as the landmarks

[17]. Regardless of the geometric form of the training set, landmarks are constrained

to be on the boundary of a shape instance, and they form a point-based representa-

tion that approximates the original shape [28]. The statistical modeling framework

requires that the same number of landmarks sampled on all shapes across the training

set.

Suppose a training set {Ti} (i = 1, 2, · · · , nS) comprises nS shape instances

and each is represented by nP landmarks. The j-th landmark of the i-th instance is

x(j)
i = [x(j), y(j), z(j)]Ti 2 R3. Owing to the correspondence assumption of landmarks,

all the nS landmarks {x(j)
i } (i = 1, 2, · · · , nS) with label j should correspond across

all instances. The landmark representation of each instance is usually written into a

concatenation of nP landmarks ordered by labels as a shape vector expression:

xi
.
= [x(1)

i , y
(1)
i , z

(1)
i , x

(2)
i , y

(2)
i , z

(2)
i , · · · , x(n

P

)
i , y

(n
P

)
i , z

(n
P

)
i ]T .

All the nS shape vectors {xi} could be concatenated into a 3nP ⇥ nS shape vector

matrix:

XS .
= [x1,x2, · · · ,xn

S

]. (1.1)

In order to align a group of shapes stored in XS, the Generalized Procrustes

Analysis (GPA) [29] operation is conducted, denoted by an alignment operator as

below

XA = A(XS). (1.2)

Specifically, the GPA of group-wise alignment is done by iteratively performing

the pair-wise Procrustes Analysis (PA) between each shape and the mean. The PA
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brings a shape vector x to a fixed shape vector y by similarity transformation

min
t,s,R

||y � sR (x� t)||2 .
=

n
PX

j=1

����y(j) � sR
�
x(j) � t

�����2

where shape irrelevant factors including translation t, scaling s and rotation R are

removed. For more details in the iterative procedure, refer to Algorithm 2.1 in [30].

If the training shapes are continuous and the i-th shape is parameterized by

the mapping Si(u), the continuous representation of the covariance matrix expressed

in the (µ, ⌫)-th entry is

Eµ⌫ =
1

(nS � 1)A

Z ⇥
Sµ(u)� S̄(u)

⇤
·
⇥
S⌫(u)� S̄(u)

⇤
dA(u), (1.3)

where S(·) is the vector-valued function that defines the continuous representation of

the i-th shape by mapping the parameter space to the physical space. S̄(u) is the mean

shape and A is the surface area of the mean shape. For numerical implementation, the

continuous covariance matrix is obtained via discretization through a set of discrete

landmarks as

Eµ⌫ =
1

(nS � 1)nP

n
SX

i=1

(xi � x̄)µ(xi � x̄)⌫ . (1.4)

where on each shape the i-th landmark xi could be obtained as sampling at the i-th

parameter point ui: i.e. xi = S(ui)

This could be written simply in a matrix form [19]

E =
1

(nS � 1)nP
XT

c Xc, (1.5)

where Xc is defined by

Xc
.
= [xA

1 � x̄,xA
2 � x̄, · · · ,xA

n
S

� x̄], (1.6)

and xA
i is the i-th shape vector after alignment operationA, i.e. the component
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of XA in (1.2) ; the mean shape vector of SSM is

x̄ =
1

nS

n
SX

i=1

xA
i . (1.7)

The Principal Component Analysis (PCA) [31] is then conducted to extract the

principal modes of shape variability via the eigenvalue decomposition of the covariance

matrix

Evm = �mvm (m = 1, 2, · · · , nS � 1), (1.8)

where vm is the m-th eigenvector and �m the corresponding eigenvalue.

The mean shape x̄, modes {vm} and variances {�m} constitutes the statistical

shape model. This statistical model is a much more compact representation of the

shape variability pattern of the implied shape class than the original training set.

What’s more, it makes possible to represent any valid instance x belonging to the

shape class by a linear approximation using only the first em (em  nS � 1) modes

x ⇡ x̄+
emX

m=1

�mvm, (1.9)

where the m-th mode parameter is found by projection

�m = (x� x̄)Tvm. (1.10)

The quality of the linear approximation has a great influence on the utility of the

statistical model in subsequent applications, and it is evidently decided by the quality

of the SSM, which is directly tied to the quality of the groupwise correspondence.

The PCA step defined by (1.5) and (1.8) is compactly written as

� = C(XA). (1.11)

The objective function of Description Length was originally derived by Davies in [19]

and elaborated in [28]. A simplified version presented in [22] defined as below is used
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in our correspondence optimization:

f
.
=

n
S

�1X

m=1

Lm, (1.12)

where each mode’s contribution is

Lm =

8
><

>:

1 + log(�m/�cut) �m � �cut,

�m/�cut otherwise.

The threshold �cut is determined by landmark resolution and shape scale

�cut =
2 lmin

rmax

, (1.13)

where lmin is the smallest edge length in the landmark-based representation and rmax

is the radius of largest circumscribing sphere over training set shapes.

1.2.2 Background on discrete and continuous formulations of the covari-

ance matrix. As a critical mathematical entity in statistical modeling stream, the

covariance matrix bares significant statistical information and is thus influential on

the resultant SSM. It is necessary to distinguish the two types of formulations under

di↵erent shape representations in terms of the continuity.

1.2.2.1 Discrete formulation. We first review the most commonly used discrete

formulation for computing the covariance matrix. For more in-depth information

about the current use of the covariance matrix in statistical shape modeling, refer to

[2, 28].

For a training set of nS shapes {Si} (i = 1, 2, ..., nS), the discrete formulation

assumes nP landmarks on each shape so that i-th shape Si is approximated by the

shape vector

Xi
.
=

h
x(1)
i ,x(2)

i , ...,x(n
P

)
i

iT
, (1.14)

where every landmark is sampled and lies strictly on the shape, namely: x(j)
i =

h
x
(j)
i , y

(j)
i , z

(j)
i

i
2 Si; 8j 2 1, 2, ..., nP .
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The discrete covariance matrix is defined by

D
.
=

1

nS � 1

n
SX

i=1

�
Xi � X̄

� �
Xi � X̄

�T
, (1.15)

where nS � 1 is the divider for unbiased sample covariance and the discrete mean

shape is

X̄
.
=

1

nS

n
SX

i=1

Xi. (1.16)

Concatenating the mean-removed shape vectors forms the shape data matrix defined

as follows

X = [X1 � X̄, X2 � X̄, ..., Xn
S

� X̄], (1.17)

which is of size 3nP ⇥ nS; the covariance matrix (1.15) could then be compactly

expressed by

D =
1

nS � 1
XX T . (1.18)

The Principal Component Analysis (PCA) [31] is frequently used to decom-

pose the covariance matrix into the principal modes of shape variability via eigen-

decomposition

Dvm = �mvm, (1.19)

where {�m}(m = 1, 2, ...nS�1) are all the non-zero eigenvalues such that �1 > �2... >

�n
S

�1, and {vm} the associated eigenvectors or eigenmodes. The mean shape X̄ and

modes {vm} along with eigenvalues {�m} constitute the statistical model, which can

provide a more compact representation of the shape variability of the shape population

than the original training set.

An alternative for covariance matrix definition is the following,

eD .
=

1

nS � 1

n
SX

i=1

�
Xi � X̄

�T �
Xi � X̄

�
(1.20a)

=
1

nS � 1
X TX , (1.20b)
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where the entry-wise definition for eD goes as follows

eDi1i2
.
=

1

nS � 1

�
Xi1 � X̄

�T �
Xi2 � X̄

�
, (1.21)

and eD = { eDi1i2} (i1, i2 = 1, 2, ..., nS). Eigen-decomposition of the eD reveals its

eigenvalues e� and eigenvectors ev with those of the original covariance matrix D as

�m = e�m, (1.22a)

vm = X evm, evm = X Tvm. (1.22b)

Thus the nS ⇥ nS covariance matrix eD and its original form D of size 3nP ⇥ 3nP

have the exact same non-zero eigenvalues from (1.22a) and eigenvectors that can be

mutually converted by (1.22b).

This formulation featuring (1.15) or (1.20a) computes the covariance matrix

by directly placing a finite set of landmarks sampled on each shape, which is also the

core of the classical Point Distribution Model [27] in statistical shape modeling. It is

referred to as the “discrete formulation” in this thesis.

1.2.2.2 Continuous formulations. Suppose the training set shapes all possess

the parameterization defined over the common parameter domain U . The i-th shape

Si is parameterized with function Si that maps a parameter point u 2 U to a point

x 2 R3 on the shape in the physical domain.

Continuous formulation I. The entry of the nS ⇥ nS covariance matrix CI

for formulation I is defined as

CI
i1i2

.
=

1

nS � 1

Z

U

⇥
Si1(u)� S̄(u)

⇤T ⇥
Si2(u)� S̄(u)

⇤
du, (1.23)

where the mean shape is

S̄(u)
.
=

1

nS

n
SX

i=1

Si(u). (1.24)
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CI = {CI
i1i2}(i1, i2 = 1, ..., nS) is characterized by the inner product between two

mean-removed continuous shapes
⇥
Si1(u)� S̄(u)

⇤
and

⇥
Si2(u)� S̄(u)

⇤
. This contin-

uous formulation I for the curve case first appeared in [18] and is adopted in [26] for

cardinal spline curves.

Continuous formulation II. This continuous formulation II considers di-

rectly the training set shape geometry and is parameterization independent; it is

defined as follows

CII
i1i2

.
=

Z

U

⇥
Si1(u)� S̄(u)

⇤T ⇥
Si2(u)� S̄(u)

⇤
|J(u)| du

(nS � 1)

Z

U
|J(u)| du

, (1.25)

where the additional Jacobian term |J(u)| is the determinant of the Jacobian of a

point on the mean shape. The term “|J(u)| du” corresponds to the “area measure for

integration dµ(u)” in [21], and it is equivalent to the “length/area” element dA(x) in

[28]. The di↵erence in the formulation (1.25) is the normalization with the denomi-

nator, which makes it easier to examine the convergence properties and the influence

of parameterization on the continuous formulation, as demonstrated in Section 2.3.

For curves, the Jacobian term is

|J(u)| =
����
d S̄(u)

d u

���� , (1.26)

and for surfaces, the Jacobian term is

|J(u, v)| =
����
@ S̄(u, v)

@u
⇥ @ S̄(u, v)

@v

���� . (1.27)

1.3 Thesis overview

The objective of this thesis is to develop an algorithm that e�ciently opti-

mizes shape correspondence for building statistical model. The means is a direct

reparametrization technique based on B-spline that makes the correspondence ma-
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nipulation for a set of shapes in a much more e�ciently fashion than current state-

of-the-art method.

Methodology

Chapter 3
Spline based covariance matrix

Chapter 2
Direct reparametrization

Chapter 1
Introduction & outline

Chapter 4
Aorta

Chapter 5
Proximal femur

Chapter 6
Conclusion & future work

Application

Figure 1.2. Thesis chapters organization

The thesis is organized as shown in Figure 1.2. Chapter 1 overviews the whole

thesis; Chapter 2 and Chapter 3 form the key methodology part; Chapter 4 and

Chapter 5 demonstrate two applications; Chapter 6 summarizes and concludes. More

specific outline goes as follows

• Chapter 1 provides a brief overview of the research field the mathematical basics

of statistical shape modeling.

• Chapter 2 describes the core technique of B-spline based direct reparametriza-

tion, including its mathematical formulation, incorporation into correspondence

optimization and numerical experimentations.

• Chapter 3 elaborates further on the covariance matrix properties in the context

of B-spline structure for both shape set representation and reparametriztaion.
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• Chapter 4 applies the proposed method to one real medical data of human

aorta, which o↵ers meaningful clinical insights to heart disease study.

• Chapter 5 uses the method on a real medical data se of the proximal femur, for

the pathological analysis of cam impingement.

• Chapter 6 sums up all the contents, research contributions and points out future

directions.

The main chapters of the thesis are based on the publications below

• Chapter 2: Kang Li and Xiaoping Qian. Direct Di↵eomorphic Reparame-

terization for Correspondence Optimization in Statistical Shape Mod-

eling. Computer-Aided Design, vol. 64, pp. 33-54, 2015.

• Chapter 3: Kang Li and Xiaoping Qian. Covariance Matrix of A Shape

Population: A Tale on Spline Setting. Computers & Graphics, vol. 47,

pp. 89-104, 2015.

• Chapter 4: Kang Li, Xiaoping Qian, Caitlin Martin and Wei Sun. Toward

patient-specific computational study of aortic diseases: A population

based shape modeling approach, Proceedings of the ASME 2014 Inter-

national Design and Engineering Technical Conferences and Computers and

Information in Engineering, Bu↵alo, NY, 2014. With Prakash Krishnaswami

CAPPD Best Paper Award.
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CHAPTER 2

DIRECT DIFFEOMORPHIC REPARAMETERIZATION
FOR CORRESPONDENCE OPTIMIZATION

2.1 Direct di↵eomorphic reparameterization based on B-splines

In this section, we present how B-splines can be used for representing repa-

rameterization of parametric curves and surfaces and be used for manipulating shape

correspondence. We show how such single direct reparameterization function di↵ers

from concatenations of multitude of simple mappings into one reparameterization

function. We then show constraints for ensuring the B-spline based reparameteriza-

tion is di↵eomorphic.

Since our correspondence manipulation is based on reparameterization of para-

metric curves and surfaces, the training shapes must be in the form of parametric

curves or surfaces. In this thesis, we choose to use B-splines to represent the shapes.

A B-spline curve of degree d is defined by

S(u) =
nX

k=0

Bk,dPk 0  u  1;

where Bk,d is the B-spline basis function [32] of degree d associated with the k-th con-

trol pointsPk recursively defined on a non-decreasing knot vector ⌅ = {⇠̄0, ⇠̄1, · · · , ⇠̄n+d+1}

Bk,d(u) =
(u� ⇠̄k)Bk,d�1(u)

⇠̄k+d � ⇠̄k
+

(⇠̄k+d+1 � u)Bk+1,d�1(u)

⇠̄k+d+1 � ⇠̄k+1

,

Bk,0(u) =

8
>><

>>:

1 ⇠̄k  u  ⇠̄k+1,

0 otherwise.

(2.1)

A B-spline surface of degree d and e is defined by

S(u, v) =
n
uX

k=0

n
vX

l=0

Bk,dBl,ePk,l 0  u  1, 0  v  1;
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where Bk,d and Bl,e following the basis definition in (2.1) is associated with the (k, l)-

th control point Pk,l, and the knot vectors along the two parametric directions are

⌅ = {⇠̄0, ⇠̄1, · · · , ⇠̄n
u

+d+1} and H = {⌘̄0, ⌘̄1, · · · , ⌘̄n
v

+e+1}.

If initially the shapes are not in B-spline form, many algorithms exist for shape

parametrization [33], and B-spline fitting [32]. In addition to B-spline, there also exist

other parametric representations. We prefer B-spline over other options due to: 1)

local support property leading to high ability of shape representation and modeling

flexibility; 2) purely polynomial basis functions contributing to the superior com-

putational e�ciency in gradient computation during the subsequent correspondence

optimization.

2.1.1 B-spline based direct reparameterization. We show below how B-

splines can also be used for representing the reparameterization of parametric curves

and surfaces.

2.1.1.1 Reparameterization of parametric curves. Figure 2.1 shows the repa-

rameterization of a 2D curve where points sampled on u have been moved to D(u).

Such a reparameterization function D(u) can be represented with the cancatenation

of simple mappings. For example, the reparameterization functionD(u) shown in Fig-

ure 2.1 is represented in Figure 2.2(a) with 4 Cauchy kernels (centered at c1, c2, c3, c4)

which are sequentially superimposed and integrated into D(u) as proposed by [28];

See Appendix I for details regarding Cauchy kernel and its concatenation. .

In this thesis, we propose to directly represent D(u) as a single B-spline func-

tion as shown in Figure 2.2(b) where empty circles represent B-spline coe�cients {bi}.

The reparameterization function D(u) for a parametric curve can be represented by

a B-spline with nb coe�cients

D(u) =
n
b

�1X

i=0

Bi,p(u)bi, 0  u  1; (2.2)
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0 1
u

a b~a ~b

(a) Two landmark points ua = 0.30, ub =
0.70 in parameter domain repositioned to
ũa = 0.22, ũb = 0.60

S(a) S(b)S(a)~
S(b)~

(b) Associated landmarks S(0.30), S(0.70) re-
distributed to S(0.22), S(0.60) in physical
domain

0 10

1

u

D
(u
)

a b

~a

~b

(c) Raparameterization function

Figure 2.1. Raparameterization function for a 2D curve. Hollow landmarks in square
and triangle represent sampled points S(u) based on parameterization u and solid
ones S(D(u)) are based on reparameterization function D(u).
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0 1

1

2.5

u

D
(u

)

 

 

c1 c2 c3 c4

Cauchy Kernel
ρ(u)
D(u)

(a) Concatenation of 4 Cauchy kernels centered
at c1, c2, c3, c4

0 1

1

u

D
(u

)

 

 

a b

~a

~b

D(u)
{bi}

(b) Single B-spline function controlled by B-
spline coe�cients shown in circles

Figure 2.2. Representing reparameterization function for 2D curves: Concatenation
of functions vs. single function

where Bi,p is the B-spline basis function [32] of degree p associated with the i-th

B-spline coe�cient bi, and it is recursively defined on a non-decreasing knot vector

U = {ū0, ū1, · · · , ūn+p+1}.

We assume that the starting and ending points of all curves are already in

correspondence. With this assumption, the boundary of the parameter domain (two

ends at u = 0, 1) is fixed even with the reparameterization function. Therefore, we

use a clamped knot vector (i.e. repeating the first (p + 1) and last (p + 1) knots)

and b0 = 0, bn = 1 for representing the reparameterization so that D(0) = 0 and

D(1) = 1.

2.1.1.2 Reparameterization of parametric surfaces. A reparameterization of a

3D surface is illustrated in Figure 2.3, where squares and circles respectively represent

two sampled points before and after the reparameterization. Since a 3D surface

S(u) = [x(u), y(u), z(u)] is mapped to a 2D parametric domain, i.e. u = (u, v),

the reparameterization D(u) for 3D surfaces S(u) have two components in u and v
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directions D(u) = [Du(u, v), Dv(u, v)]. This reparameterization function could also

be visualized by a vector field in Figure 2.3(c), and its parametric grid is shown

Figure 2.3(d).

0 0.5 10

0.5

1

u

v

(a) Sampled parametric points (b) Sampled surface points

0 0.5 10

0.5

1

u

v

(c) Reparameterization function D(u) =
(Du, Dv)

0 0.5 10

0.5

1

u

v

(d) Reparametrized parametric grid

Figure 2.3. Reparameterization vector field D(u) and sample redistribution on a 3D
surface: cubes and spheres respectively represent points before and after reparam-
eterization.

Such a reparameterization field can be represented by the concatenation of
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simple mappings. For example, two Clamped Plate Spline (CPS) warps [28] are

applied sequentially in the parameter domain shown in Figure 2.4(a) and (b) . These

two CPS warps are with centers c1 and c2 and red dotted circles as the CPS range.

See Appendix II for details on CPS warps.

0 0.5 10

0.5

1

c1

u

v

(a) Concatenation of 2 sequential CPSs: step 1
at c1

0 0.5 10

0.5

1

c2

u

v

(b) Concatenation of 2 sequential CPSs: step 2
at c2

0 0.5 10

0.5

1

bij

u

v

(c) Reparameterization by B-splines

Figure 2.4. Representing reparameterization vector field: concatenation of simple
mappings vs. single B-spline based mapping.

Instead of using concatenation of simple mappings, we propose the use of single
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B-spline functions to directly represent the reparameterization of u and v component

of the parametric domain, as shown in Figure 2.4(c) where 8⇥ 8 B-spline coe�cients

bi (red circles) are used to represent the reparameterization field D(u). In general,

the reparameterization D(u) = [Du(u, v), Dv(u, v)] in the square planar parameter

domain is defined as

Du(u, v) =
n
b1�1X

i=0

n
b2�1X

j=0

Bi,p(u)Bj,q(v)b
u
i,j,

Dv(u, v) =
n
b1�1X

i=0

n
b2�1X

j=0

Bi,p(u)Bj,q(v)b
v
i,j,

0  u, v  1;

(2.3)

where Bi,p and Bj,q are the B-spline basis functions (2.1) of degree p and q associated

with the (i, j)-th B-spline coe�cient 2-tuple bi,j = (bui,j, b
v
i,j); the coe�cient number

along the u- and v-direction are nb1 and nb2 respectively. They are respectively defined

on two sets of non-decreasing knot vector U1 and U2.

The four boundaries of all the shapes are assumed to be in correspondence

already. With this assumption, the four boundaries of the square parametric domain

are fixed during reparameterization, i.e.

Du(0, v) = 0, Du(1, v) = 1,

Dv(u, 0) = 0, Dv(u, 1) = 1.

(2.4)

Therefore, the two knot vectors are chosen to be of clamped type and the

B-spline coe�cients at the four boundaries are either 0 and 1.

2.1.2 Di↵eomorphism of reparameterization.

2.1.2.1 Curve case. Setting dD(u)/du > 0 in (2.2) gives the bijectivity con-

straint for di↵eomorphic reparameterization of curves for correspondence manipu-
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lation. Since D(u) is a degree-p B-spline function, its derivative is a degree-(p � 1)

B-spline function with bi+1�bi as B-spline coe�cients [34], we thus have the following

explicit constraint for ensuring di↵eomorphic reparameterization of curves

bi � bi+1 < 0, i = 0, 1, · · · , nb � 2. (2.5)

2.1.2.2 Surface case. The bijectivity of reparameterization can be guaranteed by

the positivity of Jacobian throughout the parameter domain, i.e.

J(D(u)) =

������������

@Du(u,v)
@u

@Du(u,v)
@v

@Dv(u,v)
@u

@Dv(u,v)
@v

������������

> 0, 8(u, v) 2 [0, 1]. (2.6)

Assuming there are nb1 ⇥ nb2 B-spline coe�cient tuples bi,j for representing

the reparameterization in (2.3). Due to the boundary constraint (2.4), there are

only (nb1 � 2) ⇥ (nb2 � 2) interior coe�cients bi,j that can be used to manipulate

correspondence for each shape. Consequently, there are 2 ⇥ (nS � 1) ⇥ (nb1 � 2) ⇥

(nb2�2) optimization variables for nS shapes. To ensure the reparameterization D(u)

is di↵eomorphic, the bijectivity condition (2.6) that prevents the self-intersection of

the parametric field can be cast as constraints on the reparameterization parameters,

i.e. interior B-spline coe�cient tuples bi,j.

Di↵eomorphism via constraints in the B-spline form of Jacobian. We

give below a su�cient condition for ensuring the Jacobian field J(u) (2.6) is positive

so that the reparameterization D(u) is di↵eomorphic. The scalar Jacobian field J(u)

defined in (2.6) for the B-spline based reparameterization (2.3) consists of deriva-

tives of B-splines (piecewise polynomials) and thus remains piecewise polynomials.

Therefore, J(u) itself can be cast in the B-spline form as described in [35] [36]. More
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specifically, the Jacobian J(u) can be expressed as

J(u, v) = det


@D(u, v)

@u
,
@D(u, v)

@v

�
,

@D(u, v)

@u
=

n
b1�2X

i=0

n
b2�1X

j=0

Bi,p�1(u)Bj,q(v)�i (bi+1,j � bi,j) ,

@D(u, v)

@v
=

n
b1�1X

k=0

n
b2�2X

l=0

Bk,p(u)Bl,q�1(v)⌘l (bk,l+1 � bk,l) ,

(2.7)

where: �i =
p

ūp+i+1 � ūi+1

; ⌘l =
q

vq+l+1 � vl+1

. Using the notation�bu
i,j = (bi+1,j � bi,j)

and �bv
k,l = (bk,l+1 � bk,l) and noticing that the product of two B-splines is a higher-

degree B-spline [37], the Jacobian could be written as the following B-spline form

J(u) = J(u, v) =
n
b1�2X

i=0

n
b1�1X

j=0

n
b1�1X

k=0

n
b2�2X

l=0

Bi,p�1(u)Bj,q(v)

Bk,p(u)Bl,q�1(v)�s⌘l det
⇥
�bu

i,j �bv
k,l

⇤

=
2n

b1�3X

s=0

2n
b2�3X

t=0

Bs,2p�1(u)Bt,2q�1(v)J
BSP
s,t ({b}),

(2.8)

where JBSP
s,t is the B-spline coe�cient of the B-spline form of the Jacobian J(u) for

the reparameterization D(u) in (2.3); each JBSP
s,t is a function of {b}. The above

B-spline form of Jacobian leads to the following su�cient condition for ensuring the

reparameterization D(u) is di↵eomorphic. Due to the non-negativeness of B-spline

basis functions, J(u) > 0 when every B-spline coe�cient in (2.8) is positive, i.e.

JBSP
s,t ({b}) > 0,

s = 0, 1, · · · , nJ1 � 1; t = 0, 1, · · · , nJ2 � 1,

(2.9)

where nJ1 = 2nb1 � 2 and nJ2 = 2nb2 � 2 are the number of B-spline coe�cients

of the B-spline form of Jacobian along the u- and v-direction; thus there are total

nJ = nJ1nJ2 = 4(nb1 � 1)(nb2 � 1) positivity constraints.

The above condition is a su�cient, but not necessary condition. In order to
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make the condition less conservative, one can extract Bézier patches out of the B-

spline representation and obtain more tighter bound of the Jacobian based on Bézier

coe�cients, as suggested in [35] and [36]. Such Bézier extraction involves the following

intermediate steps:

1. Decompose B-spline of control coe�cients {b} into Bézier patches (each patch

with control coe↵cients {eb}) by knot insertion algorithms elaborated in [34].

2. Find the Bézier representation of the Jacobian of the Bézier patches as directed

in [38].

3. Repose the Jacobian representation of Bézier patches to form the Jacobian B-

spline of C0 inter-patch continuity with control coe�cients {JBEZ
s,t }

For each reparameterization D(u) represented by degree p⇥q B-splines with nb1⇥nb2

coe�cient tuples bi,j, there are (nb1 � p) ⇥ (nb2 � q) Bézier patches with control

coe↵cients {eb} after decomposition, and there will be (nb1 � p)(2p � 1) + 1 and

(nb2 � q)(2q � 1) + 1 Jacobian B-spline coe�cients along each parametric direction.

Therefore, the bijectivity can be ensured by enforcing the following constraints for

each shape instance as

JA
s,t = JBEZ

s,t ({eb}) > 0

s = 1, · · · , nJ1; t = 1, · · · , nJ2

(2.10)

where nJ1 = (nb1 � p)(2p� 1) + 1 and nJ2 = (nb2 � q)(2q � 1) + 1 are the number of

Bézier coe�cients of the Bézier form of Jacobian along the u- and v-direction; thus

there are totally nJ = nJ1nJ2 = [(nb1� p)(2p� 1)+1][(nb2� q)(2q� 1)+1] positivity

constraints.

Jacobian constraints on landmarks. A simple alternative to the above
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rigorous di↵eomorphic conditions is to enforce Jacobian positivity at a finite set of

parameter points that correspond to landmarks. The evaluated Jacobian values are

all functions of the B-spline coe�cients {b} computed by (2.7). The parameter points

chosen are usually those associated with the parametric locations of the landmarks.

Suppose there are nJ1 = nP1 and nJ2 = nP2 landmarks along the u- and v-direction

respectively, and the (s, t)-th parameter point in us,t. The constraints can be formu-

lated as

JB
s,t = J(us,t, {b}) = det

h
@D(u

s,t

)

@u
@D(u

s,t

)

@v

i
> 0

s = 1, · · · , nJ1; t = 1, · · · , nJ2,

(2.11)

where nJ1 and nJ2 are the number of sampled Jacobians along the u- and v-direction,

in this case equalling the landmark number along each direction; thus there are totally

nJ = nJ1nJ2 = nP1nP2 positivity constraints. Although the Jacobian between two

landmarks with positive Jacobians is not necessarily positive in theory, we find that

in all examples reported in this thesis Jacobians are all positive in between with the

su�cient landmark resolution chosen. This alternative gives better e�ciency than

enforcing the constraints in the B-spline form of Jacobian, as shown in Section 2.3.

It should be noted that the proposed B-spline based reparameterization is

based on Free Form Deformation(FFD) [39]. FFD based techniques have been used

extensively, for example, in matching CT/MRI images (image registration) in a multi-

tude of medical imaging applications [40] [41] [42] [43]. The di↵erences in our approach

are the following: it is the parametric domain, rather than physical surfaces, that is

deformed; our formulation for enforcing di↵eomorphic is di↵erent; our approach for

enforcing the constraints via aggregation shown in next section is also di↵erent. It

should be noted that splines have been used in landmark matching, e.g. in [44] [45]

where the deformation is driven by energy minimizing cost function with various ker-

nels and the di↵eomorphism is guaranteed by the flow solutions to ODE. It should
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also be noted that di↵eomorphisms illustrated are akin to fingerprints observed in

[46]. There are also alternative for di↵eomorphic reparameterization for curves as

reported in [47] [48] [49].

2.2 Optimization techniques

2.2.1 Optimization formulation. With the above B-spline representation of

reparameterization functions D(u) and the di↵eomorphic conditions, we thus have

the following optimization formulation for using B-spline based reparameterization

for manipulating shape correspondence:

min
b

f(b) =
X

�
i

��cut


1 + log

�k(b)

�cut

�
+

X

�
k

<�cut

�k(b)

�cut
(2.12a)

s.t.
⇥
CT (b)C(b)

⇤
vk(b) = �i(b)vk(b) (2.12b)

vT
k (b)vk(b) = 1, k = 1, · · · , nS (2.12c)

gl(b) < 0, l = 1, · · · , nG (2.12d)

In this formulation, b is the set of optimization variables and represents the collection

of interior B-spline coe�cient tuples b for ns � 1 shapes, where one shape from the

training set is selected as a reference. The objective function f(b) is the simplified

description length, which is a function of eigenvalues computed from (2.12b) and

(2.12c). The matrix C is related to the covariance matrix E by E = CTC with

C =
Xcp

(nS � 1)nP

.

The constraint (2.12d) represents the di↵eomorphic conditions, i.e. (2.5) for curves

and (2.10) (2.11) for surfaces, each of which is a function of optimization variables b.

It must be pointed out that our proposed method can be applied to any qualifying

objective function other than the one stated in (2.12a).

The optimization formulation given in (2.12) leads to a large-scale optimization

problem. For SSM of 3D surfaces, there are 2⇥(nS�1)⇥(nb1�2)⇥(nb2�2) B-spline
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coe�cients as optimization variables with nG constraints based on (2.10) (2.11), which

will be detained in Section 2.2.3.1.

In order to e�ciently obtain optimized shape correspondence, we have devel-

oped a gradient-based optimization approach. We have derived analytical gradient

of the cost function (2.12a) with respect to optimization variables b with both direct

di↵erentiation and the adjoint sensitivity method. We have also developed a tech-

nique to approximate the constraints and to aggregate the large number of Jacobian

constraints into one constraint in order to speed up the convergence.

Analytical gradient provides an e�cient and accurate mean to obtain gradient

for optimization. It is especially important in large-scale optimization problems where

the finite di↵erence based approach for computing gradient would be ine�cient. It

turns out the analytical gradient can be derived for all the di↵erentiable intermedi-

ate steps since all steps in our formulation, including reparameterization, sampling,

alignment, PCA and DL computation are di↵erentiable, the gradient product gives

the analytical objective gradient due to the chain rule as following

df

dbr
=

X

i

@f

@�i

X

j

@�i
@xA

j

X

k

@xA
j

@xS
k

X

l

@xS
k

@D(ul)

X

r

@D(ul)

@br
(2.13)

where D(ul) is the l-th reparameterized landmark point in the parameter domain,

xS
k is the k-th landmark in the physical domain and xA

j is the j-th aligned landmark.

Among them the
@f

@�i
,
@�i
@xA

j

and
@xA

j

@xS
k

are inherently di↵erentiable, and
@D(ul)

@br
is also

di↵erentiable as long as a di↵erentiable reparameterization technique such as (2.2)

and (2.3) is used. The analytical gradient
@xS

k

@D(ul)
requires the di↵erentiability of the

geometric representation of training set shapes. In this thesis, we use the quadratic

B-spline of C1 smoothness to represent the shapes in the training set. Therefore, full

analytical gradients can be derived.

2.2.2 Analytical gradient of objective function. The total sensitivity from
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(2.12a) is just

d f(b)

d br
=

X

i

@f [b,�(b)]

@�i

@�i(b)

@br
(2.14)

where r = 1, · · · , nD; the optimization variable number nD = (nb � 2)(nS � 1) for

curves and nD = 2(nb1 � 2)(nb2 � 2)(nS � 1) for surfaces.

Under the state equation formulation in (2.12), we can obtain the objective

sensitivity in (2.14) with either the direct method or the adjoint method, giving rise

to the direct sensitivity and adjoint sensitivity. The adjoint sensitivity is significantly

faster than the direct sensitivity. We provide the derivations for both to highlight the

characteristics of the adjoint method.

2.2.2.1 Direct sensitivity. The direct sensitivity computes the gradient of the

cost function by directly di↵erentiating the cost function (2.12a). That is,

@ f(b)

@ br
=

n
SX

m=1

@f

@�m

@�m
@br

. (2.15)

The term @�m/@br (m = 1, · · · , nS) is obtained by di↵erentiating equations (2.12b)

and (2.12c) with respect br, which leads to the following resulting linear system

2

664
0 vT

m

vm �mIn
S

�CTC

3

775

2

6664

@�
m

@b
r

@v
m

@b
r

3

7775
=

2

664
0

@(CTC)
@b

r

vm

3

775 . (2.16)

The linear equation system can be solved to obtain @�m/@br and @vm/@br. Plugging

@�m/@br into (2.15) yields the desired gradient.

2.2.2.2 Adjoint sensitivity. In order to avoid the direct computation of @�m/@br

and @vm/@br, we introduce a Lagrangian quantity by augmenting the objective func-

tion (2.12a) with 2nS sets of constraints (2.12b) and (2.12c) as

L = f(�) +
n
SX

m=1

µT
m

�
CTC vm � �mvm

�
+

n
SX

m=1

⌫m(v
T
mvm � 1) (2.17)

where adjoint variables µm and ⌫m (m = 1, · · · , nS) are the Lagrange multipliers.
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Di↵erentiation of (2.17) w.r.t br gives

@ f

@ br
=
@ L
@ br

=
n
SX

m=1

@f

@�m

@�m
@br

+
n
SX

m=1

µT
m

✓
@(CTC)

@br
� @�m

@br
In

S

◆

+
n
SX

m=1

µT
m

�
CTC � �mIn

S

� @vm

@br
+

n
SX

m=1

2⌫mv
T
m

@vm

@br
,

which could be simplified to

@ f

@ br
=

n
SX

m=1

µT
m

@(CTC)

@br
vm +

n
SX

m=1

✓
@f

@�m
� µT

mvm

◆
@�m
@br

+
n
SX

m=1

⇥
µT

m(C
TC� �mIn

S

) + 2⌫mv
T
m

⇤ @vm

@br
.

(2.18)

The key idea of the adjoint method is to circumvent the direct computation of the

sensitivity of the state variables � with respect to optimization variables b. A more

general discussion on the adjoint method is available in [50] [51] [52]. Specifically in

this situation, in order to bypass the direct calculation of
@�m
@br

and
@vm

@br
in (2.18),

their coe�cients in (2.18) are set to zero. This is possible since the arbitrariness of

adjoint variables µm and ⌫m. This therefore leads to the linear adjoint equations

below for solving these adjoint variables
8
><

>:

@f

@�m
� µT

mvm = 0,

µT
m(C

TC� �mIn
S

) + 2⌫mv
T
m = 0.

(2.19)

The above equation can be rearranged into the following linear system
2

664
vT
m 0

CTC� �mIn
S

2vm

3

775

2

664
µm

⌫m

3

775 =

2

664

@f
@�

m

0

3

775 (2.20)

from which the adjoint variables µm and ⌫m can be solved. The sensitivity in (2.18)

can then be obtained through the following simplified expression

@ f

@ br
=

n
SX

m=1

µT
m

@(CTC)

@br
vm. (2.21)
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It is worth noting that, with the direct method, the linear system (2.16) is

solved for each optimization variable br, r = 1 to nD, and every eigenvalue �m. On

the other hand, with the adjoint method, the linear system (2.20) is solved just once

for every eigenvalue �m.

For the purpose of clearly demonstrating the properties and advantages of

analytical gradient formulas presented here, a few computational experiments are

conducted on concrete examples as will be discussed in Section 2.3.3.

2.2.3 Inequality constraints for optimization.

2.2.3.1 Constraints aggregation. Based on the description in Section 2.1.2.2,

we consider the two options: a) Jacobian B-spline (via Bézier implementaion) (2.10);

and b) sampled Jacobian (2.11). In either situation, the large quantity of original nJ

constraints is rather undesirable for the optimization with already many optimization

variables. For the purpose of reducing the number of constraints while not sacrific-

ing the di↵erentiability of constraint functions, the constraint aggregation [53] [54]

technique is employed here. The Kreisselmeier-Steinhauser (KS) function [55] is used

here and we choose to aggregate all the nJ Jacaobian constraints for each shape into

one single constraint to be applied as the optimization constraints in (2.12d), yielding

totally nG = nS � 1 constraints for nS � 1 shapes as

gl(b) =
1

K
ln

"
n
JX

z=1

e�KJ
z

({b}
l

)

#
< 0, l 2 1, .., nS; l 6= iR (2.22)

where Jz is original Jacobian positivity, being either JA
s,t in (2.10) for the Jacobian

B-spline constraint or JB
s,t in (2.11) for the direct sampled Jacobian constraint; the

linearly ordered index is obtained by z = s+(t�1)nJ1. iR is the reference shape index

whose parameter domain is not reparameterized and landmarks are fixed. {b}l are

just the reparameterization B-spline control coe�cients for the l-th shape. Parameter

K is a control parameter here chosen to be K = 15.
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It could be shown that this new constraint is more conservative than the origi-

nal constraints. We have found that the two options of Jacobian positivity constraints

di↵er only slightly as long as the landmark resolution of the direct sampled Jacobian

constraint option is su�ciently large.

2.2.3.2 Analytical gradient of constraints. For a gradient based optimization

approach, both the gradient of the cost function and the constraints with respect

to optimization variables are needed. The gradients of the objective function have

been discussed in great details in the previous section. The analytical gradients of

the inequality constraints based on (2.22) can also be derived. The gradient of l-th

inequality constraint w.r.t the r-th optimization variable br is

@gl
@br

= � 1Pn
J

z=1 e
�KJ

z

({b}
l

)

n
JX

z=1

e�KJ
z

({b}
l

)@Jz({b}l)
@br

(2.23)

where the Jacobian gradient @J
z

({b}
l

)
@b

r

when JA
s,t and JB

s,t can be evaluated easily from

(2.10) and (2.11).

2.3 Experimental results

In this section, we present the numerical results of the proposed correspondence

optimization approach. Experimental results on both synthetic and real 2D and 3D

data sets are described. The use of synthetic data is to check the correctness of the

results since the shape variation pattern is known. The two synthetic data sets are

the “box-bump” (2D) and the “plane-bump” (3D). The use of three real data sets,

the “hand” (2D), “distal femur” (3D) and “aortic” models, is to show the practicality

of the proposed approach.

The optimizer is Sequential Quadratic Programming routine in the MATLAB

optimization toolbox. The stopping criterion for the optimizer is chosen as the relative

change of objective function, i.e. f (k)�f (k�1)

f (0) < 10�6; it is used both in the concatena-

tion of simple mappings and direct reparameterization schemes. The allowed number
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of iterations in concatenation of simple mappings based correspondence optimization

is set to be NOPT = 106 in 2D case and NOPT = 105 in 3D case. Other optimization

parameters specific to each problem will be explained later.

The points S(uk
i ) used for computing the variation in (1.4) are uniformly sam-

pled in the parametric domain. The selection of reference shape SR has no noticeable

influence on the correspondence result as demonstrated in results below. In order to

obtain a unique solution, one reference shape instance is chosen out the nS shapes,

so that the optimization’s goal is to find nS � 1 reparameterization functions for the

remaining shapes that minimize the objective function.

2.3.1 2D synthetic data: box-bump.

d

L

H

Control Point Knot Point

(a) B-spline representation of box-bump geometry

d1

1

d2

2

d3

3

d4

4

u=0
(b) 4 box-bumps superimposed

Figure 2.5. Four B-spline represented box-bumps.

The box-bump example has been extensively used as a benchmark example for

testing statistical shape modeling algorithms [28] [24] [26] [22]. The only di↵erence

here is that the training set is now represented by B-splines instead of polylines. Key

geometry dimensions are plotted in Figure 2.5(a), where the box length and height

are both fixed at L = 60 and H = 20. Di↵erent shape instances may have di↵erent

horizontal distance d between the bump center and the left side. Four shape instances

are generated, and their key dimensions are d1 = 15, d2 = 25, d3 = 35, d4 = 45 as
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shown in Figure 2.5(b).
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(d) Desired D⇤
4(u) for Shape 4, by comparing (b)

and (c)

Figure 2.6. Desired reparameterization function for the 4th-shape D⇤
4(u) with shape

2 as the reference.

2.3.1.1 Desired reparameterization function. The use of synthetic data makes

it possible to obtain the desired reparameterization D⇤(u) manually and compare it

with the optimized reparameterization to see the quality of correspondence optimiza-

tion. Without loss of generality, we choose shape 2 as the reference shape and the

sample points S2(u) on shape 2 at parameters u = {0.48, 0.6, 0.71, 0.82, 0.89} are

shown in Figure 2.6(a). At the same parameters, the sampled points on S4(u) are

shown in Figure 2.6(b), with apparent poor correspondence with the points on shape

2. Since the B-spline represented curves are parameterized with segment length mea-
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sured from the starting point u = 0 shown in gray square in Figure 2.5(b). One can

obtain the desired reparameterization function D⇤
4(u) = {0.48, 0.6, 0.71, 0.82, 0.89} for

the shape 4 by mapping corner points in shape 4 with those in shape 2. The sampled

points S4[D⇤
4(u)] and D⇤

4 are respectively shown in Figure 2.6(c) and Figure 2.6(d).

D⇤
1 and D⇤

3 can be formed similarly but not shown here.

2.3.1.2 Reparameterization by concatenation of Cauchy kernels.

Before optimization, 51 landmarks are uniformly sampled in the parameter

domain for all the four shape instances. Shape 2 is chosen as reference. The con-

catenation of Cauchy kernels scheme is able to obtain reparameterization functions

very close to desired reparameterization functions {D⇤
k(u)}(k = 1, 3, 4). After opti-

mization w.r.t the magnitudes of randomly generated Cauchy kernels NOPT = 106

times, the reparameterization function of Shape 4 D4(u) is very close to the desired

D⇤
4(u) as shown in Figure 2.7(a). Figure 2.7(b) shows the convergence history of the

description length where the DL drops considerably from 35.2 to 15.1 after 106 itera-

tions. However, this optimization approach is extremely slow since it costs 7.6 hours

even for this small population of shapes. In fact, 73% of the one million iterations

does not even reduce DL due to two reasons. First, due to the limited optimization

space a↵orded in each Cauchy kernel, every iteration (optimization with one Cauchy

kernel) only leads to small reduction of the cost function. Second, after the optimiza-

tion with one Cauchy kernel, there is no gradient information guiding the selection

of subsequent Cauchy kernels to reduce the description length. As such, there may

be no reduction in DL between consecutive Cauchy kernels based optimization runs.

Such objective function “plateau” during the convergence process is plotted in two

zoomed in locations with 20 iterations shown in Figure 2.7(c)(d). It can be seen that

during many adjacent iterations, the DL does not decrease.

2.3.1.3 Reparameterization via B-splines.
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Figure 2.7. Optimized reparameterization with concatenation of Cauchy kernels and
DL history with zoom-in; gray bars highlight iterations with no reduction in DL



37

Optimized reparameterization function. Figure 2.8 shows the proposed
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(d) DL convergence w.r.t nb

Figure 2.8. Optimized reparameterization function D(u) at di↵erent di↵erent repa-
rameterization B-spline resolution nb and convergence of optimized DL w.r.t nb

direct di↵eomorphic reparameterization can e�ciently find the optimized D(u) that

are very close to the desired ones D⇤(u). Figure 2.8(a) shows the optimized D4(u)

with 4 B-spline coe�cients to represent each D(u) where only the two internal B-

spline coe�cients are allowed to vary to improve the correspondence. It takes 24

iterations to converge and the objective function drops from 35.7 to 32.0 and the
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optimized reparameterization functions are also plotted in Figure 2.8(a). When the

number of B-spline coe�cients for each D(u) increases to 12 and 20, the optimized

reparameterization functions become closer to the desired ones with the optimized

function for the 4th shape D4(u) as shown in Figure 2.8(b) and (c) respectively.

Figure 2.8(d) shows that with the increase of B-spline coe�cients representing the

reparameterization function, the resulting description length becomes smaller and

eventually converges, where the three states of nb = 4, 12, 20 in colored markers

associated with Figure 2.8(a)(b)(c) respectively are highlighted on the DL convergence

curve.

Time cost comparison. Figure 2.9 shows the time cost comparison between

the concatenation of Cauchy kernels and the B-spline based direct reparameterization

approaches. It shows in order to reduce the DL objective function to the same level

around 15, the direct reparameterization takes about 100 iterations and 10 seconds,

which is four orders of magnitude faster than the concatenation of Cauchy kernel

based approach (106 iterations in 105 seconds).

Correspondence improvement with optimization. Figure 2.10 demon-

strates the significant correspondence improvement as observed on Shape 4. Before

optimization, the five points on Shape 4 shown in Figure 2.10(b) corresponding to

the five feature points fixed on the reference Shape 2 in Figure 2.10(a) indicate a

poor initial correspondence (Point B signifies right bump corner on Shape 2, but it

lies at bump top on Shape 4). After optimization with with nb = 22 reparameteri-

zation B-spline control coe�cients, the five corresponding feature points on Shape 4

are brought toward the expected feature locations as shown in Figure 2.10(c).

SSM improvement after optimization. As a direct result of the correspon-

dence improvement, the statistical model is optimized where the 1st mode is able to

faithfully capture the horizontal sliding pattern as displayed in Figure 2.11(d)(e)(f)
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Figure 2.10. Correspondence before and after optimization with nb = 22 B-spline
coe�cients in reparameterization B-spline.
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while initial statistical model fails to do so as shown in Figure 2.11(a)(b)(c). From

a quantitative perspective, the initial SSM has variation �1 = 5.78 accounting for

only 73% of the total shape variation, whereas the the optimized SSM has variation

�1 = 34.18 accounting for all 100% of the total shape variation.initial,mode1,frame 1

(a) �1 = �3
p
�1

initial,mode1,frame 2

(b) �1 = 0 (mean)

initial,mode1,frame 3

(c) �1 = +3
p
�1

optimized,mode1,frame 1

(d) �1 = �3
p
�1

optimized,mode1,frame 2

(e) �1 = 0 (mean)

optimized,mode1,frame 3

(f) �1 = +3
p
�1

Figure 2.11. SSM’s 1st mode before optimization in (a)(b)(c) with variation �1 = 5.78
(73%), and after optimization in (d)(e)(f) with variation �1 = 34.18 (100%)

2.3.2 3D synthetic data: Plane-bump. Besides the above box-bump curve ex-

ample, we also test the correspondence with a synthetic plane-bump surface example:

the surface is a bivariate Gaussian distribution function with surface point (x, y, z)

defined by

z = he�
(x�µ)2

2�2 e
� (y�⌫)2

2�2 (2.24)

where (µ, ⌫) is the mean and � = � are the standard deviation along x and y direc-

tion; h is the peak height. Restricting the distribution function to a square domain

[0, L]⇥[0, L] that includes the mean point (µ, ⌫) gives the plane-bump geometry shown

in Figure 2.12(a). Such a plane-bump shape can be approximated by a B-spline sur-

face and Figure 2.12(b) show the shape represented by a bi-quadratic B-spline with

11⇥11 control points that fits the underlying Gaussian distribution surface. If ⌫ = L
2

and R are both locked and only the horizontal position along the x-axis is allowed to
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move, then a training set of several synthetic plane-bump instances each of which is

represented by B-splines are generated. The true shape variation pattern is obviously

the translational motion along the x-axis. Four shapes are generated as seen in Fig-

ure 2.12(c), and their mean positions µ1, µ2, µ3, µ4 are uniformly spaced. Each of the

four plane-bump B-spline instances inherently implies a parameterization. During the

generation of parameterization, attention is needed to introduce as little parameteri-

zation distortion as possible so as to greatly reduce the chance of under-sampling in

later procedure. Figure 2.12(b) shows the parameterization with fairly low distortion

as indicated by its knot curves for Shape 1; the other three instances are similarly

parameterized.

(a) Plane-bump geometry

(b) B-spline represented plane-bump (c) 4 instances superimposed

Figure 2.12. Plane-bump geometry and training set of 4 B-spline surfaces

2.3.2.1 Desired reparameterization function. Due to the di↵erent bump

locations along the x-axis, the bumps for four shapes correspond to di↵erent areas
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in the parameter domain. This di↵erence becomes very clear when we pick the same

point in the parameter domain and compare their associated points in the physical

domain for all the instances. Without loss of generality, we pick five parameter

points: uA = (0.45, 0.5),uB = (0.17, 0.5),uC = (0.73, 0.5),uD = (0.45, 0.22),uE =

(0.45, 0.78), associated with the five feature points on the bump of Shape 2 as shown

in Figure 2.16(a). Sampled at this common parameter point set, the physical points

on the four shapes are di↵erent; the five points on Shape 4 are taken as an example

in Figure 2.16(b). The five feature points on Shape 2 denote the bump peak and four

bump base quadrant points; they cover a square region in the parameter domain.

In the subsequent correspondence optimization, Shape 2 is chosen as the refer-

ence shape whose landmarks are kept fixed. The desired reparameterization functions

for the other three shapes should be one that roughly translate the square region of

Shape 2 to those on other shapes. Figure 2.13(a) gives a rough visualization of the

parametric grid under the desired reparameterization function for Shape 4, i.e. the

translational motion of square region from the left side (near Shape 2’s bump area)

toward the right side (near Shape 4’s bump area).

2.3.2.2 Reparameterization by concatenation of Clamped Plate Splines.

It’s possible to obtain the optimal correspondence through two reparameterization

methods: concatenation of CPSs [28] and B-splines. There are 51⇥51 landmark points

(nP = 2601) uniformly sampled in each shape; Shape 2 is chosen as the reference

shape. After NOPT = 105 iterations of CPS warps, the deformed landmark grid

(originally a regular 51 ⇥ 51 grid) under the optimized reparameterization function

D4(u) in Figure 2.13(b) approaches the desired trend shifting rightward along the

x-axis very similar to Figure 2.13(a). The reparameterization functions for Shape 2

and 3 are not shown but also exhibit similar trends.

2.3.2.3 Reparameterization via B-splines.
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Figure 2.13. Desired regular landmark grid deformation and parametric grid under
optimized D4(u) with concatenation of Clamped Plate Spline warps.

Optimized reparameterization function. The desired optimization ob-

tained by the CPS concatenation reparameterization can also be achieved via the

B-spline reparameterization approach. Figure 2.14(d) shows the deformed landmark

grid (originally a regular 51⇥51 grid) with 12⇥12 B-spline coe�cients, which demon-

strates similar motion in Figure 2.13(b). The deformed landmark grid and control

coe�cients grid at di↵erent resolutions of 4 ⇥ 4, 8 ⇥ 8 and 12 ⇥ 12 overlapped by

the Jacobian color field are plotted in Figure 2.14(a)(b)(c) respectively. The color

plot indicates the Jacobian field on a fixed scale over [0, 2]; a color closer to red has

a larger amount of stretch, whereas being closer to blue means a larger amount of

compression.

Time cost comparison. The time cost of entire correspondence optimization

at the three reparameterization B-spline resolutions, in comparison to that of the

CPS concatenation reparameterization, is shown as the convergence curve of DL

history w.r.t to iteration/optimization number in Figure 2.15(a) and w.r.t elapsed

time in Figure 2.15(b). It can be seen that in order to reduce the DL objective
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(a) nb = 4⇥ 4 (Jmin = 0.34) (b) nb = 8⇥ 8 (Jmin = 0.29)

(c) nb = 12⇥ 12 (Jmin = 0.25)
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0.5

1

u

v

 R(u,v): Shape 4

(d) nb = 12⇥ 12, deformed grid

Figure 2.14. Optimized reparameterization D4(u) for shape 4 obtained with di↵erent
numbers of B-spline coe�cients. The color field shows the Jacobian of D4(u).
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Figure 2.15. Time cost comparison: concatenation of CPS warps vs. direct reparam-
eterization with B-splines.

function to the same level around 45, the direct reparameterization by B-spline with

12 ⇥ 12 coe�cients takes 668 iterations and 3.4 ⇥ 103 seconds; it is about one order

of magnitude faster than the concatenation of CPS approach which takes 5 ⇥ 104

iterations and 3⇥ 104 seconds.

Correspondence improvement after optimization. Figure 2.16 demon-

strates the significant correspondence improvement with optimization. Before opti-

mization, the five points on Shape 4 shown in Figure 2.16(b) corresponding to the

five feature points fixed on the reference Shape 2 in Figure 2.16(a) indicate a poor

initial correspondence (Point A signifies bump peak on Shape 2, but it lies almost at

left bump bottom on Shape 4). After optimization with with nb = 12⇥ 12 reparame-

terization B-spline control coe�cients, the five corresponding feature points on Shape

4 are brought very close to the expected feature locations as shown in Figure 2.16(c).

Constraint history and di↵eomorphic conditions. Figure 2.17 shows

the aggregated constraints of directly sampled Jacobians during the optimization
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(a) 5 feature points fixed on Shape 2

(b) Badly corresponded feature points on Shape
4 before optimization

(c) Well corresponded feature points on Shape 4
after optimization

Figure 2.16. Correspondence before and after optimization with nb = 12⇥ 12 control
points in reparameterization B-spline.

iterations with di↵erent B-spline coe�cients of 4⇥ 4, 8⇥ 8, 12⇥ 12 and 16⇥ 16. At

the coarse representation (nb = 4⇥4), the 3 aggregated constraints for shapes 2, 3 and

4 are not active throughout the optimization process as shown in Figure 2.17(a) where

all constraint values are negative. As the B-spline resolution for reparameterization

increases to 8 ⇥ 8, 12 ⇥ 12 and 16 ⇥ 16, some of the aggregated Jacobian become

acitive (i.e. positive) as shown in Figure 2.17(b)(c)(d). In the end, these violated

constraints all converge to non-positive values, ensuring the di↵eomorphism of the

reparameterization.

In order to clearly demonstrate how the aggregated Jacobian constraints can

guarantee a di↵eomorphic reparameterization, we further increase the reparameteri-

zation B-spline resolution to 16 ⇥ 16. At resolution of 12 ⇥ 12 B-spline coe�cients

as shown in Figure 2.14(c), although the aggregated Jacobian violates the constraint

but the original Jacobian is still positive and no self-intersection exists. As the reso-
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shapes at four B-spline coe�cient resolutions
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(a) The Jacobian with negative Jacobian at
some landmark

(b) Positive Jacobian at all landmarks

 

 

(c) Self-intersection in (a)

 

 

(d) No self-intersection in (b)

Figure 2.18. Di↵eomorphism through Jacobian constraints in shape 4 with 16 ⇥ 16
B-spline coe�cients
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lution further increases to 16⇥16, the aggregated constraint is more severely violated

and finally the original Jacobian drops below zero and self-intersection takes place.

The aggregated constraints history for the three non-reference shapes are shown in

Figure 2.17(d). We picked two particular iterations on the constraint history curve

of Shape 4; one is where the aggregated constraint is most severely violated shown

in square yellow marker called “Violated”, and the other is the ending iteration with

active constraint shown in red circle marker called “resolved”.

The iteration with “violated” constraint is associated with the Jacobian field

in Figure 2.18(a) with the aggregated constraint Jaggrg = 0.33 and the minimum

Jacobian values at landmarks is J raw
min = �0.25 indicating a self-intersection at the

vicinity of u = (0.2, 0.5) enclosed by the dotted square. After the optimization

iterations, the Jacobian of the reparameterization from the final iteration is shown

in Figure 2.18(b), and stops at an active aggregated constraint Jaggrg = 4.019 ⇥

10�12, and the minimum Jacobian values for all 51 ⇥ 51 landmarks is J raw
min = 0.27.

Figure 2.18(c) and (d) shows the zoom-in around u = (0.2, 0.5) of Figure 2.18(a)

and (b) where there is initially self-intersection and it has since been untangled.

This illustrates that when the aggregated Jacobian constraint becomes inactive, the

resulting reparameterization is di↵eomorphic.

Jacobian constraint comparison: Jacobian B-splines vs. sampled

Jacobians. In addition to using the aggregated sampled Jacobians JB in (2.11) as

optimization constraint {gl(b)} via (2.22), the aggregated Jacobian B-spline option

with JA as defined in (2.10) is also implemented for comparison. The time cost history

between the two constraint options are shown in Figure 2.19, where slightly better

computational e�ciency with JA is observed.

In lightly of the ease of implementation using JB and the small di↵erence in

the optimization results, the sampled Jacobian positivity constraint option is adopted
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for all the 3D experiments in this thesis.

2.3.3 Computational analysis of analytical gradient. Section 2.2.2 intro-

duces the analytical gradient formula in the form of direct and adjoint sensitivities.

Now we use the concrete examples of 2D box-bump and 3D plane-bump presented

above to demonstrate the accuracy, correctness and e�ciency of analytical gradient

by comparing it with numerical approximation. We also show adjoint sensitivity

formula outperforms direct sensitivity in terms of computational cost w.r.t resolu-

tion parameters and shape population scale, making adjoint the preferred formula for

implementing analytical gradient.

2.3.3.1 Analytical gradient vs. numerical approximation. Within the con-

text of the 3D plane-bump example in Section 2.3.2, the objective function gradients

d f(b)
d b

r

using analytical formula can be compared with numerical approximation in

terms of results accuracy and time cost. The analytical equation refers to the direct

sensitivity in (2.15) (2.16) and the adjoint sensitivity in (2.20) (2.21). The numerical

approximation uses finite di↵erence method

d f(b)

d br
⇡ f(b+ her)� f(b)

h

where the nb ⇥ 1 unit vector er = [0, ..., 0, 1, 0, ..., 0]T has “1” is in the r-th row, and

the small step length is h = 10�6.

Table 2.1 compares the gradients results between direct and adjoint sensitivity

along with numerical aproximation. The landmark resolution is nP = 51 ⇥ 51, and

reparametrization B-spline resolution is nb = 4⇥4 as seen in Figure 2.20(a), resulting

in nD = 24 optimization variables and objective function gradients. The table shows

8 gradient values out of 24 for all three evaluation options, when the optimization

variables {br}(r = 1, ..., 24) are randomly selected. It’s shown that the two analytical

sensitivities are very close to each other ( consistent through the 9th digit), and
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numerical approximation gives slightly o↵ accuracy ( consistent only till the 3rd digit)

due to the di�culty of determining a good step length.

Table 2.1. Gradient results comparison between analytical (direct and adjoint sen-
sitivity) and numerical (finite di↵erence) approach. Landmark resolution nP =
51 ⇥ 51, reparametrization B-spline coe�cients resolution nb = 4 ⇥ 4 as shown in
Figure 2.20(a).

d f
d b

r

Direct Adjoint Numerical

r = 1 3.9459884974 3.9459884974 3.9459915797

r = 2 2.7229409584 2.7229409585 2.7229473574

r = 5 1.3655139494 1.3655139494 1.3655253781

r = 9 2.5544258045 2.5544258045 2.5545317968

r = 13 0.9374377692 0.9374377692 0.9375618646

r = 17 -2.6814822821 -2.6814822821 -2.6814423464

r = 20 0.2758634880 0.2758634880 0.2759022806

r = 24 -0.2397113282 -0.2397113282 -0.2396724241

Table 2.2 shows the time cost comparison between analytical and numerical

gradient computations. The reparametrization B-spline resolutions are 4 ⇥ 4, 8 ⇥ 8,

12 ⇥ 12 and 16 ⇥ 16. It’s seen that adjoint is the fastest, direct is slightly slower

and numerical approximation is the slowest; the computational e�ciency advantage

is particularly noticeable as reparametrization B-spline is refined.

2.3.3.2 Validation by directional derivative. Previously it was shown that

analytical and numerical gradients are consistent. In order to further test the cor-

rectness of the analytical gradients, we compare the analytical gradient couplet with

the numerical approximated steepest ascending direction. Taking again the current

example for instance, the 24 optimization variables determines the (u, v) positions

of the 12 reparamerization B-spline control points in the parameter domain, where

each of Shape 1, 3 and 4 has 4 control coe�cients points. Figure 2.20(a) shows the
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Table 2.2. Gradient evaluation time cost comparison between analytical (direct and
adjoint sensitivity) and numerical (finite di↵erence) approach. Landmark resolution
nP = 51 ⇥ 51, reparametrization B-spline coe�cients resolution are nb = 4 ⇥ 4 in
as Figure 2.18(a), nb = 8⇥ 8 as in Figure 2.18(b), nb = 12⇥ 12 as in Figure 2.18(c)
and nb = 16⇥ 16 .

Time cost (s) Direct Adjoint Numerical

nb = 4⇥ 4 0.1170 0.1098 1.3848

nb = 8⇥ 8 0.1284 0.1225 7.6627

nb = 12⇥ 12 0.2566 0.2329 24.7603

nb = 16⇥ 16 0.4062 0.3719 56.8001

0 0.5 10

0.5

1

(b1,b2)

(b3,b4)

(b5,b6)

(b7,b8)

u

v

(a) The 8 design variables b1, b2, ...b8 control the
reparametrization B-spline on Shape 1

u
0 0.5 1

v

0

0.5

1

vA

(b) Analytical gradient vA (green) and numeri-
cal gradient (closest dotted to green) identified
as the maximum directional derivative out of
all directions (dotted arrows), where nV = 25
directions.

Figure 2.20. The 4 coe�cient points determined by the 8 design variables on Shape
1 and the analytical with numerical gradient at the 1st coe�cient point

4 coe�cient points (b1, b2), (b3, b4), (b5, b6), (b7, b8) associated with Shape 1. These 4

points along with the remaining 8 are randomly placed in the parameter domain for

testing purpose.

We use the 1st coe�cient point (b1, b2) of Shape 1 for illustration. The analyt-
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ical gradient at reparametrization B-spline’s coe�cient point p is obtained by adjoint

formula as vA =
h
d f(p)
d b1

, d f(p)
d b2

iT
=

h
d f(b)
d b1

, d f(b)
d b2

iT
= [3.9460, 2.7229]T .

Then we subdivide the full 360� range into nV angle intervals, yielding the

same number candidate directions vi =
h
cos 2⇡(i�1)

n
V

, sin 2⇡(i�1)
n
V

iT
. The directional

derivative at p along direction vi is approximated by finite di↵erence

rv
i

f(p) ⇡ f(p+ hvi)� f(p)

h

. The direction v⇤ with the maximum directional derivative is just the steepest

ascending direction and its gradient magnitude is rv⇤f(p), making the numerical

gradient vN = v⇤rv⇤f(p). As an example, when the full circle is equally subdivided

into nV = 25 directions as shown in Figure 2.20(b), the directional derivatives are

plotted in arrows pointing in their directions and with positive magnitude in solid and

negative magnitude in dotted line. The direction with the largest positive directional

derivative is identified as the numerical gradient shown in blue, which is fairly close

to the analytical gradient computed by adjoint formula shown in green.

Table 2.3 shows the analytical gradient quantitatively validated by the nu-

merical gradient as the numerical resolution nV increases. The row of nV = 25

corresponds to the scenario in Figure 2.20(b). It is observed that the numerical re-

sults tend toward the analytical direction as number of angle intervals increases. Due

to random nature of the position of selected coe�cient point, the correctness of the

analytical gradient obtained via proposed adjoint method has been tested success-

fully. Similar validation can be carried out for the remaining 11 coe�cient points

[b3, b4]T , [b5, b6]T , ..., [b23, b23]T .

2.3.3.3 Direct vs. adjoint sensitivity. The analytical gradients obtained by

direct and adjoint formula have been tested after comparison with finite di↵erence

based numerical approximation, with regard to both results and correctness. Both
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Table 2.3. Analytical gradient vA =
h
d f(b)
d b1

, d f(b)
d b2

iT
compared with numerical ap-

proximation by directional derivatives vN = v⇤rv⇤f(p).

Option Gradient

Numerical
(Finite

Di↵erence)

nV = 25 4.1819 2.2927

nV = 100 3.8808 2.8129

nV = 250 3.9513 2.7152

nV = 500 3.9513 2.7152

nV = 1000 3.9513 2.7152

nV = 2500 3.9445 2.7251

nV = 5000 3.9445 2.7251

Analytical (Adjoint formula) 3.9460 2.7229

the direct and adjoint formulas produce the same gradient results, however, their

e�ciency performance di↵er in general situations. Now the 2D box-bump example

and 3D plane-bump example are chosen to demonstrate their di↵erence in compu-

tational e�ciency, and we compare the time cost, for each iteration, of computing

the gradient of the description length with respect to B-spline coe�cients b by the

direct and adjoint method. The situations are discussed where each one varies only

one parameter with all the other parameters held fixed.

Figure 2.23(a) shows the computing time for 2D training set called box-bump

in Figure 2.5 and Figure 2.23(b) for 3D data plane-bump in Figure 2.12. It can

be seen that the adjoint method is more e�cient in computing the gradient when

the number of shape instances become large for both 2D and 3D. In light of this

significant computational speed gain, the adjoint sensitivity is the method used in

the subsequent numerical implementation.

Figure 2.21 shows the influence of reparametrizatoin B-spline coe�cients reso-
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lution nb on computation time when using direct and adjoint formulas. It’s observed

that the adjoint sensitivity enjoys a very small time increase as reparametrization B-

spline is refined. Here the landmark resolution is fixed at nP = 51 for 2D box-bump

and nP = 51⇥ 51 = 2601 for 3D plane-bump, and shape number is fixed at nS = 4.

Reparam. B-spline nb

4 6 8 10 12

Ti
m

e(
s)

#10-4

2

4

6

8

10

12 Direct
Adjoint

(a) 2D box-bump: vary nb, with nP = 51, ns = 4
fixed

Reparam. B-spline nb

50 100 150 200 250

Ti
m

e(
s)

0.01

0.02

0.03

0.04

0.05
Direct
Adjoint

(b) 3D plane-bump: vary nb = nb1nb2, with
nP = 2601(nP1 = nP2 = 51), nS = 4 fixed

Figure 2.21. Computing time for direct sensitivity and adjoint sensitivity w.r.t
reparametrization B-spline coe�cients resolution nb at each iteration for both curve
and surface training sets.

Figure 2.22 shows the influence of landmark resolution nP on computation

time when using direct and adjoint formulas. It’s observed that the adjoint formula

takes much shorter time as landmark grid is refined. Here the reparametrization B-

spline resolution is fixed at nb = 12 for 2D box-bump and nb = 12⇥ 12 = 144 for 3D

plane-bump, and shape number is fixed at nS = 4.

Figure 2.23 shows the influence of shape population size (shape number) nS

on computation time when using direct and adjoint formulas. It’s observed that

the adjoint formula is very insensitive to shape number and makes it possible for the

algorithm to scale to large population. Here the reparametrization B-spline resolution
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(a) 2D box-bump: vary nP , with nS = 4, nb = 12
fixed
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(b) 3D plane-bump: vary nP = nP1nP2, with
nS = 4, nb = 144(nb1 = nb2 = 12) fixed

Figure 2.22. Computing time for direct sensitivity and adjoint sensivity w.r.t land-
mark number nP at each iteration for both curve and surface training sets.

is fixed at nb = 12 for 2D box-bump and nb = 12⇥ 12 = 144 for 3D plane-bump, and

the landmark resolution is fixed at nP = 51 for 2D box-bump and nP = 51⇥51 = 2601

for 3D plane-bump.

From these three circumstances, it’s clear that although direct and adjoint

sensitivity yield same gradient results, the adjoint method outperforms direct formula

due to its superior computational e�ciency advantage.

2.3.4 2D real data: Hand.

2.3.4.1 Training set B-spline pre-processing. We test our correspondence

optimization on a real data set from 40 raw images [56]. One example image is shown

in Figure 2.24(a). A quadratic B-spline is fit to each raw image of the hand contours

and the control points and knots of a B-spline curve are shown in Figure 2.24(b).

The number of control points vary from 50 to 63 and generally di↵erent from one to

another due to the slightly di↵erent shapes in di↵erent images. All the 40 B-spline
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(a) 2D box-bump: vary nS , with nP = 51, nb =
12 fixed
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(b) 3D plane-bump: vary nS , with nP =
2601(nP1 = nP2 = 51), nb = 144(nb1 = nb2 =
12) fixed

Figure 2.23. Computing time for direct sensitivity and adjoint sensivity w.r.t shape
number nS at each iteration for both curve and surface training sets.

represented hands are superimposed in Figure 2.24(c). Since the generalized Pro-

crustes Analysis involves iterative procedure and drastically slows down the entire

correspondence optimization if it is included, the shape alignment is performed only

once before the actual optimization. This practice further improves the computation

e�ciency and is observed to have little influence on the result compared to includ-

ing alignment during every optimization iteration. The one-time alignment result is

shown in Figure 2.24(d).

2.3.4.2 Optimization via reparameterization B-spline.

Optimized reparameterization function and correspondence improve-

ment. The reparameterization function is parameterized with 12 B-spline coe�cients.

The landmark resolution is nP = 151 and landmarks are sampled uniformly in the

parameter domain before optimization. Shape 1 is selected as the reference shape.

For brevity, only Shape 21 is picked out of the remaining 39 shapes to show the

correspondence change before and after optimization.
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(a) Raw hand image

u=0

Control Point
Knot Point

Hand B−splines CP and knots

(b) Fitted B-spline curve (starts from
gray square)

TS B−splines before one−time alignment

(c) Before alignment

TS B−splines after one−time alignment

(d) After alignment

(e) Feature points on image

Hand B−splines CP and knots

(f) Feature points on B-spline

Figure 2.24. Pre-processing the training set of hand data.
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The initial reparameterization function for optimization is the identity func-

tion. To obtain the desired reparameterization function for comparison, the original,

manually marked 56 raw feature points accompanying the data set in [56] are used

to determine those parameters of the detailed feature points of all instances. The 56

features points are plotted on one raw image and the corresponding B-spline curve

in Figure 2.24(e) and (f), and they include the finger tips, gaps and knuckle points.

Comparing the 56 corresponding parameters of all the 40 instances lead to the 39

desired reparameterization functions.

The initial, desired , and optimized reparameterization functions of Shape 21

are then plotted in Figure 2.25(a). It can be seen that although the desired function is

only a manual approximation under the guide of basic hand anatomy knowledge, the

optimized correspondence matches with it very well. All the other 38 shapes exhibit

this similar results although not shown here.

Out of the 56 original feature points from the images, we plot 11 key feature

points for a more clear demonstration of correspondence improvement due to the

optimization. The 11 feature points located at finger tips and valleys on the reference

Shape 1 is shown in Figure 2.25(b). Before optimization the corresponding points

on Shape 21 that have the same parameters as those on Shape 1 are situated at the

positions displayed in Figure 2.25(c), where most feature points are far away from

the finger tips/valleys where they are expected to be. After optimization, they are

brought to the locations in good correspondence to the feature points on Shape 1 as

shown in Figure 2.25(d).

Statistical modes improvement. Figure 2.26 and Figure 2.27 respectively

show the first two modes of variations from the statistical models with and without

correspondence optimization. It can be seen that the shape variation without the op-

timization is highly improbable: the middle and index fingers are all out of proportion
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(d) Optimized: S21(D(u))

Figure 2.25. Feature points on Shape 21 before and after optimizing correspondence
with respect to shape 1.
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initial,mode1,frame 1

(a) �1 = �3
p
�1

initial,mode1,frame 2

(b) �1 = 0 (mean)

initial,mode1,frame 3

(c) �1 = +3
p
�1

initial,mode2,frame 1

(d) �2 = �3
p
�2

initial,mode2,frame 2

(e) �2 = 0 (mean)

initial,mode2,frame 3

(f) �2 = +3
p
�2

Figure 2.26. The first 2 modes of statistical model for hand data before optimization.
�1 = 723.2(31.48%),�2 = 467.7(20.36%)
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in length and width. The first mode of the statistical model before correspondence

optimization is only 31.48% of the total variation. The shape variation from the op-

timized correspondence looks realistic. The first mode of the statistical model with

correspondence optimization is 50.24% of the total variation.

optimized,mode1,frame 1

(a) �1 = �3
p
�1

optimized,mode1,frame 2

(b) �1 = 0 (mean)

optimized,mode1,frame 3

(c) �1 = +3
p
�1

optimized,mode2,frame 1

(d) �2 = �3
p
�2

optimized,mode2,frame 2

(e) �2 = 0 (mean)

optimized,mode2,frame 3

(f) �2 = +3
p
�2

Figure 2.27. The first 2 modes of statistical model for hand data after optimization.
�1 = 438.4(50.24%),�2 = 153.44(18.04%)

Such di↵erences in shape variations from the models are a direct consequence

of the optimized correspondence from Figure 2.25(c) to Figure 2.25(d) as compared

to Figure 2.25(b).

SSM evaluation measure improvement. To further compare the quality

improvement of the statistical model before and after optimization, the three quan-

titative measures of SSM proposed in [28] are computed. Figure 2.28 compares the
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Figure 2.28. SSM quality before and after optimization
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generalization ability, specificity and compactness error [28] before and after corre-

spondence optimization.

The quantitative measure of the generalization ability is achieved by the leave-

one-out procedure, where one shape is chosen to compare with its reconstructed shape

by the statistical model built from the remaining nS�1 shapes. More specifically, the

reconstructed shape x̃i for the i-th shape xi can be obtained using (1.9). Varying the

number of modes nm for the linear approximation, the leave-one-out generalization

measure of SSM is given by

EG(nm) =
1

nS

n
SX

i=1

||xi � x̃i||. (2.25)

The standard error of generalization measure is defined by

�G(nm) =
�p

nS � 1
. (2.26)

where � is the sample standard deviation of EG(nm)

A third useful quantitative measure is the compactness error defined by

EC(nm) =
n
mX

m=1

r
2

nS
�m (2.27)

It can be seen that the optimized statistical model’s quality has significantly

improved in that the optimized correspondence with SSM leads to smaller error than

that of the initial correspondence for all three measures.

Time cost comparison. The time e�ciency between the concatenation of

Cauchy kernels and B-spline based reparameterization at coe�cient resolution of nb =

4, 12, 20 are compared in Figure 2.29, where the DL history is plotted with respect

to both optimization/iteration number and time cost in seconds. In order for DL to

reach the level of 620, Cauchy kernel concatenation takes 105 iterations and 1.6⇥ 105

s, and direct reparameterization with B-spline at resolution nb = 12 only needs 502
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iterations and 1.3 ⇥ 103 s. Therefore the B-spline based direct reparameterization

is around 100 times more e�cient than the concatenation of Cauchy kernels based

reparameterization.

100 102 104 106580

600

620

640

660

680

700

Optimization / Iteration Number

D
L

 

 

Cauchy
Bsp. nb=4
Bsp. nb=12
Bsp. nb=20

(a) DL w.r.t optimization (Cauchy kernel) / it-
eration number (B-splines)
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(b) DL w.r.t time cost

Figure 2.29. Time cost comparison: concatenation of Cauchy kernels vs. B-spline
based reparameterization for correspondence optimization

2.3.5 3D real data: Distal femur.

2.3.5.1 Training set pre-processing. The second real data set is a group of 34

human femoral bones. In this study, we focus on the shape variation of the distal

femur portion, which is separated from the whole femur with a manual planar cut

for each shape instance. Figure 2.30(a) shows the distal femur shape instance of

Shape 1 as an example. For our pre-processing of the mesh models into the B-spline

surfaces, we obtain the mesh parameterization with a method proposed in [57] that

map an open mesh into a rectangle domain. To enhance the mesh parameterization

and to avoid unevenness of the triangles in the parametric domain, a stretch measure

suggested in [58] is then minimized and the obtained mesh parameterization is shown

in Figure 2.30(b).
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(a) Distal femur in triangle mesh

A B

CD
Minimal stretch mesh param.

(b) Mesh parameterization

(c) Bi-quadratic B-spline with 30 ⇥ 30 control
points (white cubes)

(d) B-spline and knot curves

Figure 2.30. Pre-processing the distal femoral bone
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The 4 corners denoted by A,B,C,D for each mesh are manually chosen and

considered to be in good correspondence across the training set, so that only the

interior correspondence needs to be optimized. With the parameterization of each

mesh vertex, a bi-quadratic B-spline surface of 30 ⇥ 30 control points is then fit on

each shape. The resulting B-spline representation of the mesh shown in Figure 2.30(a)

is now shown in Figure 2.30(c) and (d). This B-spline represented shape provides a

di↵erentiable shape representation for correspondence manipulation. Similar to the

hand example, a one-time alignment is performed only once before the correspondence

optimization. It is done by aligning the triangle meshes with the Iterative Closest

Point algorithm.

2.3.5.2 Optimization via reparameterization B-spline. In the optimization,

200 400 600 800 10001200
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Iteration

D
L

DL history

(a) DL history

0 0.5 10

0.5

1

u

v
 R(u,v): Shape 34

(b) Parametric grid under optimized D34(u)

Figure 2.31. Optimization DL history and result of deformed grid of Shape 34 under
the optimized reparameterization function with B-spline coe�cients resolution of
8⇥ 8.

Shape 1 is selected as reference. Totally 51 ⇥ 51 landmarks are sampled uniformly

in the parametric domain of each shape. When the reparameterization B-spline co-

e�cients resolution is chosen to be a 8 ⇥ 8 grid, the objective DL history is shown
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in Figure 2.31(a), and the deformed parameterization grid under the optimized repa-

rameterization function for Shape 34 is visualized in Figure 2.31(b). The quantitative

evaluation of the optimized SSM in generalization, specificity error and compactness

are also performed and sizable improvements similar to Figure 2.28 are observed.
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Figure 2.32. Time cost comparison: concatenations of CPS warps vs. direct B-spline
based reparameterization for correspondence optimization for 34 shapes.

Figure 2.32 shows the time cost comparison between concatenations of Clamped

Plate Spline warps (optimization stopped till the 104-th iteration) vs. direct B-spline

based reparameterization (B-spline coe�cients grid from 4⇥4 to 9⇥9) for correspon-

dence optimization for this femur data set. It can be seen that the direct approach

with 6 ⇥ 6 reaches the same level of DL around 585 at approximately two orders of

magnitude more e�cient rate. With the further increase of the resolution (i.e. the

number of B-spline coe�cients) of the B-spline reparameterization functions, the DL

can be reduced further than that of concatenation of CPSs, although the computa-

tional e�ciency advantage becomes gradually less noticeable.
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CHAPTER 3

COVARIANCE MATRIX OF A SHAPE POPULATION:
A TALE ON SPLINE SETTING

3.1 Covariance matrix of spline curves and surfaces

For the above continuous formulations of the covariance matrix, (1.23) and

(1.25), we show they can be computed e�ciently and accurately with Bézier/B-spline

based shape representation, either in closed-form or with quadrature methods.

3.1.1 Continuous formulation I with analytical integral. With training set

shapes in the Bézier form, the integrand in continuous formulation I (1.23) is the

multiplication of two Bernstein polynomials, and thus the integration has analytical

form. Shapes in the form of B-splines, i.e. a collection of Béziers, also have analytical

integration for (1.23).

3.1.1.1 Bézier curves. We start by considering a collection of shapes that are

represented by degree p Bézier curves. The i-th Bézier curve is defined by

Si(u) =
pX

j=0

Bp
j (u)P

(i)
j , u 2 [0, 1] (3.1)

where Bp
j (u) is the degree p Bernstein basis for the j-th control point P(i)

j (j =

0, 1, ..., p). The mean shape is

S̄(u) =
1

nS

n
SX

i=1

Si(u) =
pX

j=0

Bp
j (u)P̄j, (3.2)

which is still a degree p Bézier curve with control points

P̄j =
1

nS

n
SX

i=1

P(i)
j . (3.3)

Similarly, the mean-removed i-th shape
⇥
Si(u)� S̄(u)

⇤
is also a Bézier curve with

control points

bP(i)
j = P(i)

j � P̄j.
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The covariance matrix as formulated in (1.23) becomes

CI
i1i2 =

1

nS � 1

Z 1

0

⇥
Si1(u)� S̄(u)

⇤T ⇥
Si2(u)� S̄(u)

⇤
du

=
1

nS � 1

Z 1

0

pX

j1=0

pX

j2=0

Bp
j1(u)B

p
j2(u)

bP(i1)T
j1

bP(i2)
j2 du

=
1

nS � 1

Z 1

0

2pX

j=0

B2p
j (u)Q(i1,i2)

j du,

where

Q
(i1,i2)
j =

min(j,p)X

l=max(0,j�p)

�
p
l

��
p

j�l

�
�
2p
j

� bP(i1)T
l

bP(i2)
j�l . (3.4)

In the above equation, we utilize the fact the product of two Bernstein polynomials

of degree p and q is a higher order Bernstein polynomial of degree (p + q) as proved

in [59], i.e.

Bp
i (u)B

q
j (u) =

�
p
i

��
q
j

�
�
p+q
i+j

� Bi+j,p+q(u).

In this case multiplication of two degree p Bézier curves becomes a degree 2p Bézier

curve with new control points Q(i1,i2)
j . By further considering the integral property of

Bernstein polynomial below [59]

Z 1

0

pX

j=0

Bp
j (u)Qj du =

Pp
j=0 Qj

p+ 1
, (3.5)

the covariance matrix expression reduces to

CI
i1i2 =

2pX

j=0

min(j,p)X

l=max(0,j�p)

�
p
l

��
p

j�l

�bP(i1)T
l

bP(i2)
j�l�

2p
j

�
(nS � 1)(2p+ 1)

. (3.6)

Consequently, the covariance matrix for a Bézier represented shape population in

the continuous formulation I can be obtained analytically without even resorting to

sampling landmarks on the shapes.

3.1.1.2 Bézier surfaces. We assume here the shapes are represented in Bézier

surfaces of the degree p and q along the u- and v-direction respectively. The i-th



72

shape is a Bézier surface defined by

Si(u) =
pX

j=0

qX

k=0

Bp
j (u)B

q
k(v)P

(i)
j,k, u⇥ v 2 [0, 1]2, (3.7)

where Bp
j (u) and Bq

k(v) are the Bernstein basis functions of degree p and q and P(i)
j,k

(j = 0, 1, ..., p; k = 0, 1, ..., q) is the control points.

Through the derivation similar to the Bézier curve case, the covariance matrix

entry reduces to

CI
i1i2 =

2pX

j=0

2qX

k=0

min(j,p)X

l=max(0,j�p)

min(k,q)X

m=max(0,k�q)
�
p
l

� �
p

j�l

��
q
m

��
q

k�m

�bP(i1)T
l,m

bP(i2)
j�l,k�m�

2p
j

��
2q
k

�
(nS � 1)(2p+ 1)(2q + 1)

.

(3.8)

where bP(i)
j,k = P(i)

j,k � P̄j,k is the Bézier control points for the mean-removed shape
⇥
Si(u, v)� S̄(u, v)

⇤
for the i-th shape and P̄j,k =

1
n
S

Pn
S

i=1 P
(i)
j,k.

Since a B-spline curve (surface) is simply a piecewise collection of Bézier curves

(surfaces), the piecewise summation of (3.6) and (3.8) gives the analytical integrals

for for shapes represented in B-splines.

3.1.2 Continuous formulation II with analytical integrand. Due to the

Jacobian involved in continuous formulation II (1.25), even for shapes that are pa-

rameterized by Béziers or B-splines, the analytical integration is di�cult to obtain in

general. However, analytical form of the integrand can still be obtained, which would

facilitate the quadrature based numerical integration.

3.1.2.1 Bézier curves. If all shapes are represented in Bézier curves of degree p

with the definition presented in (3.1). The Jacobian is degree (p� 1) Bézier defined

by

J(u) =
p�1X

k=0

Bp�1
k (u) ePk, (3.9)
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where the new control points are

ePk = p(P̄k+1 � P̄k). (3.10)

Therefore the covariance matrix in this context reduces to

CII
i1i2 =

Z 1

0

2pX

j=0

p�1X

k=0

B2p
j (u)Bp�1

k (u)Q(i1,i2)
j

ePk du

(nS � 1)

Z 1

0

p�1X

k=0

Bp�1
k (u) ePk du

, (3.11)

where Q
(i1,i2)
j is defined earlier in (3.4).

3.1.2.2 Bézier surfaces and B-spline curves/surfaces. Similarly analytical

form of J(u) for Bézier surface, B-spline curves and B-spline surfaces can be obtained.

Thus the integrand in the second continuous formulation of the covariance matrix can

be obtained exactly for B-spline curves and surfaces.

3.1.3 Approximation of continuous formulation I and II. The numerical

quadrature based approximation of the continuous formulations leads to what will be

referred to as the “approximated continuous forms” of the covariance matrix, not to

be confused with the discrete formulation in (1.21). Such approximated continuous

forms would reveal the link between continuous form and the usual discrete form. We

examine two integration schemes below: mid-point rule and Gaussian quadrature.

3.1.3.1 Continuous formulation I.

Integration by mid-point rule. The integration in the curve case by mid-

point rule is achieved by discretizing the parameter domain U = [0, 1] into nP param-

eter intervals [euj, euj+1](j = 1, ..., nP ) of equal length, where eu1 = 0, eun
P

+1 = 1. Then

the approximate covariance matrix is

eCI,Mid
i1i2 =

1

nS � 1

n
PX

j=1

⇥
Si1(⇠j)� S̄(⇠j)

⇤T ⇥
Si2(⇠j)� S̄(⇠j)

⇤
�uj,
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where the mid-point parameter is ⇠j = (euj + euj+1)/2. Due to equal intervals and

recall that the point S(⇠j) on the i-th shape can be regarded as the j-th landmark

x(j)
i as in (1.14), and the above could be written as

eCI,Mid
i1i2 =

1

nS � 1

n
PX

j=1

h
x(j)
i1 � x̄

iT h
x(j)
i2 � x̄

i 1

nP

=
1

(nS � 1)nP

�
Xi1 � X̄

�T �
Xi2 � X̄

�
.

(3.12)

This shows the discrete formulation (1.15) or (1.20a) is equivalent to the approximated

continuous formulation I (3.12)

eCI,Mid
i1i2 =

1

nP

eDi1i2 . (3.13)

which holds for the surface case as well by means of similar derivation.

Integration by Gaussian quadrature. Besides the mid-point rule to eval-

uate the integral in (1.23), another common form of numerical integration is through

Gaussian quadrature. Since the integrand in (1.23) is just degree 2p polynomials for

curves, Gaussian quadrature with at least nG � p + 1 quadrature points is expected

to give the exact answer. Similar conclusions can be drawn for surfaces. In our

implementation, each knot span of B-spline curves corresponds to [-1,1] interval for

Gaussian quadratures.

3.1.3.2 Continuous formulation II.

Integration by mid-point rule. The above numerical integration approaches

can be similarly used to obtain the approximate forms for continuous formulation II.

The covariance matrix of the continuous formulation II in (1.25) for the curve case

can be approximated by

eCII,Mid
i1i2 =

Pn
P

j=1

⇥
Si1(⇠j)� S̄(⇠j)

⇤T ⇥
Si2(⇠j)� S̄(⇠j)

⇤
�L(⇠j)

(nS � 1)
Pn

P

j=1�L(⇠j)
, (3.14)

where the weight over each segment is the discretized arc length at the evaluated
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point S̄(⇠j) on the mean shape defined by

�L(⇠j) =

8
>>>>>>><

>>>>>>>:

|S̄(⇠
j+1)�S̄(⇠

j

)|
2

j = 1

|S̄(⇠
j

)�S̄(⇠
j�1)|+|S̄(⇠j+1)�S̄(⇠

j

)|
2

1 < j < nP

|S̄(⇠
j

)�S̄(⇠
j�1)|

2
j = nP

(3.15)

The approximate covariance matrix of continuous formulation II in the surface

case is defined by

eCII,Mid
i1i2 =

Pn
Pu

j=1

Pn
Pv

k=1
bSi1(⇠j, ⌘k)bSi1(⇠j, ⌘k)�A(⇠j, ⌘k)

(nS � 1)
Pn

Pu

j=1

Pn
Pv

k=1�A(⇠j, ⌘k)
, (3.16)

where the (j, k)-th point on the mean-removed shape is

bSi(⇠j, ⌘k) = Si(⇠j, ⌘k)� S̄(⇠j, ⌘k).

The term �A(⇠j, ⌘k) is the discretized area at the evaluated point S̄(⇠j, ⌘k), which

is the area of the quadrangle determine by the four vertices S̄(⇠j, ⌘k), S̄(⇠j+1, ⌘k),

S̄(⇠j, ⌘k+1), S̄(⇠j+1, ⌘k+1). The quadrangle area is computed as the sum of the two

triangles.

Again, it can be shown that the approximate continuous formulation II (3.16)

for the surface case is equivalent to the discrete form (1.15) and (1.20a) by a scale of

1/nP under the assumption of uniform sampling of the mean shape.

Integration by Gaussian quadrature. The only di↵erence in the Gaussian

integration of continuous formulation II as compared to that of continuous formulation

I is the added the Jacobian term and its normalizer. Since the Jacobian term |J| is

not a polynomial over the parameter domain due to the square root norm, analytical

form cannot be derived for the formulation II ; however, analytical integrand can be

obtained in Gauss integration.

3.2 Covariance matrix under reparameterization
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3.2.1 Reparameterization via B-splines R(u). In computing the continuous

formulations of the covariance matrix of a shape population, either analytically or

approximately, we have adopted B-spline representation S(u) of the shapes. In or-

der to study the influence of shape parameterization (i.e. how points are sampled

or distributed) on the covariance matrix, we present a method below for computing

the covariance matrix of shapes after B-spline reparameterization, i.e. S[R(u)] where

R(u) is the reparameterization function represented again in B-splines. Such repa-

rameterization is also used to optimize correspondence across the shape population

in the next section.

3.2.1.1 Reparameterization of curves. Reparameterization function in the

curve case R(u) could be directly represented by a degree d B-spline function as

R(u) =
n
BX

i=0

Nd
i (u)bi, 0 6 u 6 1, (3.17)

where Nd
i is the B-spline basis function associated with the i-th reparameterization B-

spline coe�cient bi defined on a non-decreasing knot vector U = {ū0, ū1, ..., ūn
B

+d+1}.

The boundary of the parameter domain can be fixed by using a clamped knot vector

and setting b0 = 0, bn
B

= 1 so that R(0) = 0 and R(1) = 1.

Figure 3.1(a) shows a reparameterization function expressed by a quadratic

reparameterization B-spline with 10 B-spline coe�cients bi. The e↵ect of the repa-

rameterization applied to the parameter domain could be observed by five points,

which moved from a, b, c, d, e to A,B,C,D,E respectively. After reparameteriza-

tion, the parameters are mapped from u = {0.15, 0.33, 0.51, 0.68, 0.86} to R(u) =

{0.11, 0.29, 0.46, 0.58, 0.88}, and their images in the physical domain also relocated to

somewhere else as seen in a B-spline represented finger tip in Figure 3.1(b).

In order to have a valid reparameterization that is free of self-intersection, it

is required to enforce the bijectivity constraint for di↵eomorphic reparameterization
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(a) Reparametrization function R(u) represented by
quadratic B-spline of 10 coe�cients
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(b) Points a, b, c, d, e moved to A,B,C,D,E
after reparameterization

Figure 3.1. Direct reparameterization of a B-spline curve

by setting dR(u)/d u > 0. Since R(u) is a degree d B-spline function, its derivative is

a degree (d� 1) B-spline function with bi+1 � bi as B-spline coe�cients [34], we thus

have the following explicit constraint for ensuring di↵eomorphic reparameterization

of curves

bi � bi+1 < 0, i = 0, 1, ..., nB � 1. (3.18)

3.2.1.2 Reparameterization of surfaces. The reparameterization function

R(u) for surfaces is a vector field throughout the square parameter domain with two

components [Ru(u, v), Rv(u, v)]. It could be directly represented by a degree (d, e)

B-spline surface controlled by (nB
u

+ 1)⇥ (nB
v

+ 1) control grid with the definition

R(u) =

n
B

uX

i=0

n
B

vX

j=0

Nd
i (u)N

e
j (v)bi,j, 0 6 u, v 6 1, (3.19)

where Nd
i and N e

j are the B-spline basis functions of degree p and q associated

with the (i, j)-th B-spline coe�cient 2-tuple bi,j = (bui,j, b
v
i,j). They are respectively

defined on two sets of non-decreasing knot vector U = {ū0, ū1, ..., ūn
B

u

+d+1} and
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V = {v̄0, v̄1, ..., v̄n
B

v

+e+1}.

For a fixed boundary at the four corners and four sides, two knot vectors are

chosen to be of clamped type and the B-spline coe�cients at the four boundaries are

either 0 and 1. The bijectivity of reparameterization for the purpose of avoiding self-

intersection can be guaranteed by the positivity of the reparameterization Jacobian

throughout the parameter domain, i.e.

J (u) =

���������������

@R
u

(u,v)
@u

@R
u

(u,v)
@v

@R
v

(u,v)
@u

@R
v

(u,v)
@v

���������������

> 0, 8(u, v) 2 [0, 1]. (3.20)

Note J (u) is the Jacobian of the reparameterization mapping R(u). It is di↵erent

from the Jacobian of the B-spline shapes J(u) used in the covariance matrix in the

continuous formulation II.

3.2.2 Incorporation of reparameterization into the covariance matrix. In-

corporating reparameteriztion B-splines into the covariance matrix for both continu-

ous formulations is achieved by replacing the parameter u with the reparameterization

function R(u).

3.2.2.1 Continuous formulation I. With the reparameterization Ri for each

shape Si(u), the basic form of the covariance matrix in continuous formulation I in

(1.23) becomes

CI
i1i2

.
=

1

nS � 1

Z

U

bSi1 [Ri1(u)]
T bSi2 [Ri2(u)] du, (3.21)

where

bSi[Ri(u)] = Si [Ri(u)]� S̄(R(u)), (3.22)
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and the continuous mean shape (1.24) becomes

S̄(R(u))
.
=

1

nS

n
SX

i=1

Si[Ri(u)]. (3.23)

Bézier curves under B-spline reparameterization. When the curve

shapes are represented by Bézier with B-spline reparameterization, we can still derive

the analytical integral after the reparameterization. The reason is that the compo-

sition of degree p Bernstein polynomial in a Bézier curve with a degree d piecewise

polynomial in a B-spline reparameterization function just leads to a degree pd piece-

wise polynomial.

Suppose a degree d reparameterization B-spline has its knots dividing the

parameter domain [0, 1] into nK spans, i.e. [⇠̃d+s�1, ⇠̃d+s)(s = 1, ..., nK), only over each

span is it possible to make use of the function composition properties of Bernstein

polynomials for the analytical derivation of the covariance matrix entry.

The original i-th Bézier curve is equivalent to a piecewise degree-p Bézier curve

defined on these nK spans, where the curve on the s-th span is defined by

Si;s(u) =
pX

j
S

=0

Bp
j
S

(û)P(i;s)
j
S

, (3.24)

and the original reparameterization B-spline for the i-th shape is equivalent to a

piecewise degree-d Bézier

Ri;s(u) =
dX

j
R

=0

Bd
j
R

(û) b(i;s)j
R

, (3.25)

over the knot span of u 2 [⇠̃d+s�1, ⇠̃d+s) where

û =
u� ⇠̃p+s�1

⇠̃p+s � ⇠̃p+s�1

2 [0, 1], s = 1, ..., nK .

The i-th Bézier shape after reparameterization over the s-th span is just a func-

tion composition of degree-p Bézier Si;s and degree-d Bézier Ri;s, yielding a degree-pd
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Bézier due to the properties of Bernstein basis composition as suggested by [59]

Si;s[Ri;s(u)] =
pdX

j=0

(1� û)pd�jûj eY(i;s)
j , (3.26)

where eYj is a sum of the scaled Bernstein coe�cients. Releasing the binomial coe�-

cients in (3.26) restores the Bernstein basis

Si;s[Ri;s(u)] =
pdX

j=0

Bpd
j (û) Y(i;s)

j , s.t. Y(i;s)
j = eY(i;s)

j

�✓
pd

j

◆
(3.27)

The mean shape is still a degree-pd Bézier curve

S̄s(u) =
pdX

j=0

Bpd
j (û)Ȳ(s)

j ,where: Ȳ(s)
j =

1

nS

n
SX

i=1

Y(i;s)
j , (3.28)

and the mean-removed shape for the i-th shape is also a Bézier curve

Ŝi;s[Ri;s(u)] = Si;s[Ri;s(u)]� S̄s(u) =
pdX

j=0

Bpd
j (û)Z(i;s)

j , (3.29)

with control points: Z(i;s)
j = Y(i;s)

j � Ȳ(s)
j . The covariance matrix entry is

CI
i1i2 =

Z 1

0

1

nS � 1
Ŝi1;s[Ri1;s(u)]

T Ŝi2;s[Ri2;s(u)] du

=

Pn
K

s=1

⇣
⇠̃p+s � ⇠̃p+s�1

⌘P2pd
j=0 W

(i1,i2;s)
j

(nS � 1)(2pd+ 1)
,

(3.30)

where W
(i1,i2;s)
j =

min(j,pd)X

l=max(0,j�pd)

�
pd
l

��
pd
j�l

�
�
2pd
j

� Z(i1;s)T
l Z(i2;s)

j�l .

B-spline curves under B-spline reparameterization. B-spline curves

generally have more than one knot span, an inverse map has to be computed to locate

those knot spans after reparameterization since the B-spline basis functions are a sin-

gle polynomial only within each knot span of the B-spline. For any di↵eomorphic repa-

rameterization R(u), there exists a unique set of parameters  = { 0, 1, ..., n+p+1}

that are mapped to the training set B-spline knots ⌅, namely

R( k) = ⇠k k = 0, 1, ..., n+ p+ 1. (3.31)
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where ⇠k is the knots of the B-spline curves.

The inversely mapped training set B-spline knots  with the reparameteri-

zation B-spline knots together divide the parameter domain [0, 1] into a new set of

spans, over each of which the function composition property of Bernstein polynomial

can be applied and (3.26) holds. The covariance matrix can be analytically computed

by (3.30) over the new set of spans.

Bézier/B-spline surface under B-spline reparameterization. However,

such analytical formulas are not available in the case of B-spline reparameterization

for Bézier or B-spline surfaces. The reason is that the reparameterized domain R(u)

is typically not rectangular and B-spline surfaces are only piecewise polynomial in

rectangular knot intervals.

To sum up, we can evaluate the covariance matrix in continuous formulation

I analytically by strictly following the analytical formulas listed in Table 3.1.

Table 3.1. Analytical formulas for continuous formulation I with/without B-spline
reparameterization

Training set
shape type

Without
reparam.

With
reparam.

Bézier curves (3.6) (3.30)

Bézier surfaces (3.8) —

B-spline curves (3.6) (3.30)

B-spline surfaces (3.8) —

Numerical approximations. After applying the reparameterization func-

tion, the required modifications for mid-point and Gaussian integrations are straight-

forward by substituting R(u) for u in all the approximate equations shown in the

previous section.
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Table 3.2 gives the minimum number of quadrature points required for exact

recovery of the covariance matrix of continuous formulation I. The first four rows are

for splines represented shapes without reparameterization and the last four rows with

reparameterization. Note, for shapes represented by B-spline curves with B-spline

reparameterization (7-th row in Table 1), an inverse mapping is needed for exact

recovery of the covariance matrix. For B-spline surfaces with multiple knots upon B-

spline reparameterization (8-th row in Table 1), Gauss quadrature cannot guarantee

exact recovery of the covariance matrix.

Table 3.2. Minimal Gaussian abscissae number per knot span n⇤
G for exact recovery

of the covariance matrix of continuous formulation I

Shape representation {Si(u)}
Reparam.

B-spline {Ri(u)}
Gauss Pt.
Number

Type Degree Degree n⇤
G

Bézier curve p — p+ 1

Bézier surface p⇥ q — (p+ 1)(q + 1)

B-spline curve p — p+ 1

B-spline surface p⇥ q — (p+ 1)(q + 1)

Bézier curve p d pd+ 1

Bézier surface p⇥ q d⇥ e (pd+ 1)(qe+ 1)

B-spline curve p d pd+ 1

B-spline surface p⇥ q d⇥ e —

3.2.2.2 Continuous formulation II. With reparameterization of the shapes, the

basic form (1.25) of the covariance matrix in continuous formulation II becomes

CII
i1i2

.
=

Z

U

bSi1 [Ri1(u)]
T bSi2 [Ri2(u)] |J(R(u))| du

(nS � 1)

Z

U
|J(R(u))| du

(3.32)

where the continuous mean shape (1.24) becomes (3.23), J(R(u)) is computed from

the mean shape, and bSi[Ri(u)] is defined as in (3.22).

The analytical integrand can be similarly achieved with the procedure de-
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scribed in Section 3.1.2.1. This analytical integrand can then be used in the mid-point

or Gauss quadrature method for integrating entry in the covariance matrix.

3.3 Shape correspondence optimization via reparameterization

With the B-spline representation of reparameterization functionsR(u) and the

di↵eomorphic conditions (3.18) and (3.20) presented in Section 3.2.1.1 and 3.2.1.2,

we thus again have the optimization formulation in (2.12d) , where b is the set of op-

timization variables and represents the collection of interior B-spline coe�cient tuples

b for B-spline reparameterization of ns�1 shapes. The objective function f(b) is the

simplified description length as proposed in [22], which is a function of eigenvalues

computed from (2.12b) and (2.12c). The covariance matrix C = 1
n
S

�1
Ĉ could be

computed by analytical form or numerical schemes (mid-point or Gauss quadrature).

The constraint (2.12d) represents the di↵eomorphic conditions, i.e. (3.18) for curves

and (3.20) for surfaces, each of which is a function of optimization variables b.

3.4 Numerical examples

In this section, we compare numerical results of computed covariance matri-

ces from two continuous formulations under di↵erent discretization resolutions. In

order to compare the analytical form of the covariance matrix (1.23) from continuous

formulations and their approximations through mid-point or Gauss quadrature and

their convergence, we compare the the covariance matrix norm and its largest eigen-

value. The matrix norm used is the Frobenius norm of a m ⇥ n matrix C = {Cij}

(i = 1, ...,m; j = 1, ..., n)

|C| =

vuut
mX

i=1

nX

j=1

C2
ij. (3.33)

We show the convergence of both formulations, but first formulation leads to di↵erent

covariance matrix norm under di↵erent reparameterizations. We then compare the

resulting shape correspondence in building the SSM.
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3.4.1 Covariance matrices from discrete points and spline representation

of shapes. In order to compare the computed covariance matrices from two forms of

shape representations: discrete points and B-spline based continuous representation,

we compare the computed matrices for a simple set of shapes: four circular arcs as

shown in Figure 3.2(a). These four quarter circle shapes can be represented with the

following parametric form

S1(u) =
h
sin

⇣⇡
2
u
⌘
, cos

⇣⇡
2
u
⌘i

S2(u) =
h
1� cos

⇣⇡
2
u
⌘
, sin

⇣⇡
2
u
⌘i

S3(u) =
h
1� cos

⇣⇡
2
u
⌘
, 1� sin

⇣⇡
2
u
⌘i

S4(u) =
h
sin

⇣⇡
2
u
⌘
, 1� cos

⇣⇡
2
u
⌘i

(3.34)

where u 2 [0, 1]. With such explicit, continuous representations of arcs, the covariance

matricies of continuous formulation I (1.23) and formulation II (1.25) can be directly

computed, without resort to discrete sampling or B-spline fitting. The resulting

matrix norms are respectively 0.1284 for formulation I and 0.1200 for formulation II.

We then compute the two forms of covariance matrices from sampled discrete points

and B-spline representations of sampled points. It should be noted that the non-

rational form of B-splines used in this work can only approximate the circular arcs.

Exact representation of a circular arc would need a rational form of B-splines.

We choose three forms of point sampling on the shapes (Figure 3.2(b)): uni-

form sampling based on the angle span ✓, uniform sampling along x axis, and uniform

sampling along each chord of the arcs. The span angle based uniform sampling also

corresponds to arc-length based uniform sampling since the underling shapes are cir-

cular.

Figure 3.2(c), (d) and (e) respectively show the sampled points based on the

three sampling schemes where the number of sampled points nP = 16. The norm of
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the discrete covariance matrix 1
n
P

eDi1i2 using the discrete formula (1.20a) is shown in

Figure 3.2(f), where the x-axis indicates the number of sampled points that ranges

from 6 to 104. The norm of another weighted discrete covariance matrix (3.14) with

substituting sampled points x(j)
i for Si(⇠j) is shown in Figure 3.2(g). It can be seen

that, for each sampling scheme, di↵erent numbers of sampled points correspond to

di↵erent covariance matrix norms. As the number of sampled points increases, the

covariance matrix norm of each sampling scheme converges, but converges to di↵erent

values, depending on the underling sample scheme. For all three sampling schemes,

it takes at least 103 sampled points to converge. The norms of the discrete covariance

matrix under the angle span, X-coordinate, and chordal distance sampling schemes

converge to 0.1284, 0.1309 and 0.1200 respectively as shown in Figure 3.2(f). When

using weighted points in the covariance matrix; they converge to 0.1200, 0.1310 and

0.1200 as shown in Figure 3.2(g). Among the three point sampling schemes, only angle

span based sampling has a converged value consistent with reference value 0.1284

since it reflects the arc-length parameterization. This example clearly demonstrates

that, for the covariance matrix from discrete points based representation of shapes, it

takes a large number of data points to reach the converged covariance matrix and the

resulting matrix depends on the sampling density (number of points) and distribution

(sampling scheme).

For the B-spline based covariance matrix, we first fit B-spline curves based

on the discrete points sampled with the above three schemes. B-spline curve/surface

fitting usually involves three phases [32], knot determination where a set of knot

parameters for B-spline shapes need to be determined, data parameterization where

for each data point Qj a corresponding parameter ūj needs to be decided, and control

point calculation where control points Pi are computed so that the error between the
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Figure 3.2. Discrete sampling and corresponding covariance matrix norms. The sign
(circle, square and triangle) in Figures 3.2(f) and 3.2(g) corresponds to respectively
point sampling from angle span, x-coordinate and chord distance based schemes.
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data and the resulting B-spline shape is minimized, i.e.

min
{P

i

}

n
PX

j=1

|Qj � S(ūj)|2.

We choose uniform distribution of knots with clamped end conditions. For data

parameters, we studied three common forms of data parameterization shown in Fig-

ure 3.3: a) equidistant �ūj = constant; b) chord length �ūj = ||�Qj||; and c) the

centripetal method �ūi =
p

||�Qj+1 �Qj|| [60] where Qj represents the data point.

Qj

Pi

Data Point Control Point

(a) B-spline fitting from discrete data

0 1ūj

(b) Equidistant data parameterization: �ūj = constant

0 1ūj

Data Parameter Knot Parameter

(c) Chord length data parameterization: �ūj ⇠ ||�Qj+1 �
Qj ||

0 1ūj

(d) Centripetal data parameterization: �ūj ⇠p
||�Qj+1 �Qj ||

Figure 3.3. B-spline fitting with di↵erent methods of data parametrization.

Figure 3.4(a) shows an example of fitting nP =6 sampled points with a quadratic
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Figure 3.4. Covariance matrix norms from B-spline curves fitted with three meth-
ods of data parameterization. The sign (circle, square and triangle) corresponds
to respectively angle span, x-coordinate and chord distance based point sampling
scheme shown in Figures 3.2.
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B-spline of nCP = 4 control points, and Figure 3.4(b) is the fitted B-spine training

set. In the convergence study of formulation I (computed by the analytical formula

(3.6)) and formulation II computed by Gaussian quadrature approximation of (1.25)

respectively, we choose nP = 100 sampled points for B-spline curve fitting, and vary-

ing the number of control points nCP from 4 to 20. The results of two continuous

forms of covariance matrices computed with fitted B-splines curves are shown in the

remainder of Figure 3.4 where three data parameterization methods for three sam-

pling schemes are shown respectively in the last three rows in Figure 3.4. We can see

from this figure that

• Even though covariance matrices from discrete points all need at least a thou-

sand points to converge as shown in Figure 3.2, the convergence of the covari-

ance matrix from B-splines only needs fewer than 10 control points as shown

in Figure 3.4. Thus, B-spline based shape representation is very e�cient for

computing the covariance matrix.

• With the chord-length based data parameterization in B-spline fitting, the re-

sulting covariance matrices for both forms of continuous formulation are inde-

pendent from point sampling schemes, as shown in Figure 3.4(e) and 3.4(f). This

is because, when su�cient number of data points are used in fitting, regardless

of sampling schemes, the chord-length based data parameterization essentially

corresponds to arc length based data parameterization. Thus B-spline based

shape representation under chord length based data parameterization can lead

to accurate calculation of the covariance matrix, regardless of point sampling

schemes. However, for other forms of data parameterization such as equidistant

and centripetal methods, the B-spline based covariance matrix still depends on

the data parameterization method. The reason is that any data parameteriza-

tion other than the chord length based method would create a correspondence



90

among shapes that is di↵erent from that under arc length based parameter-

ization. Thus, the resulting covariance matrix may di↵er depending on the

underlying data parameterization.

3.4.2 Convergence of approximated continuous formulations. A plane-

bump shape instance is represented by a bi-quadratic B-spline surface by 11 ⇥ 11

control points as shown in Figure 3.5(a) where the knot curves are shown in blue.

The training set is composed of 4 such B-spline surfaces, which di↵er in horizontal

position of the bump along the u-direction as seen in Figure 3.5(b).

(a) Shape in bi-qaudratic B-spline surface (b) 4 B-spline surfaces superimposed

Figure 3.5. Four B-spline represented plane-bumps superimposed. nS = 4; p = 2, q =
2.

In the approximated continuous formulation I through mid-point, nP = nPu⇥

nPv = n2
Pu landmarks are sampled on each B-spline surface throughout the parameter

domain U = [0, 1] ⇥ [0, 1]; and a series of landmark numbers for nPu along both u-

and v-direction ranging from 10 ⇠ 103 are used. The analytical covariance matrix

is computed following derived equation (3.8). The matrix norm of the analytical

covariance matrix is |C⇤| = 8.15 and the largest analytical eigenvalue is �⇤1 = 8.03. It

can be seen from Figure 3.6 that both the covariance matrix and the eigenvalues under

the approximate formulation are approaching the analytical values as the number

of landmarks tends toward infinity. In addition, the analytical values can also be

e�ciently and exactly obtained by integration with Gauss quadrature, where only

n⇤
Gu = n⇤

Gv = 3 Gauss abscissae are needed per knot span in each direction.
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Figure 3.6. Convergence of covariance matrix norm and eigenvalues with continuous
formulation I and its approximation by the mid-point scheme for the plane-bump
training set shown in Figure 3.5.

In the mid-point based continuous formulation II (3.16), nP = nPu⇥nPv = n2
Pu

landmarks are sampled on each B-spline surface throughout the parameter domain

U = [0, 1] ⇥ [0, 1]; and a series of landmark numbers for nPu along both u- and

v-direction ranging from 10 ⇠ 103 are used. The converged covariance matrix is

computed with the Gauss quadrature (nG = 20) and the matrix norm of the most

accurate covariance matrix is |C⇤| = 8.45 and the largest analytical eigenvalue is

�⇤1 = 8.32. Figure 3.7 shows that the covariance matrix and the eigenvalues computed

with di↵erent number of mid-points and Gauss quadrature points. They all converge

as the number of landmarks tend toward infinity or the number of quadrature points

increase. It is clear that the matrix norm and the eigenvalues can be more e�ciently

and accurately obtained with Gauss quadrature than with mid-point.

Comparing Figure 3.6 and Figure 3.7, one can see that approximations of both

formulations I and II converge as su�cient landmark points are used. However, they

converge to di↵erent values, 8.154 and 8.45 respectively for the matrix norm, and

8.027 and 8.32 respectively for the largest eigenvalue.
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Figure 3.7. Convergence of the covariance matrix norm and eigenvalues with contin-
uous formulation II and its approximations for the plane-bump training set shown
in Figure 3.5.
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3.4.3 Convergence of continuous formulations under reparameterization.

In this example, we show that, with the first continuous formulation, the converged

values may be di↵erent with di↵erent parameterizations and the second formulation

is parameterization-independent. In the training set of line-bumps, each line-bump

shape is represented by a quadratic B-spline governed by 12 control points as shown

in Figure 3.8(a). The training set then consists of 4 such B-spline curves, with only

the horizontal position of the bump is di↵erent as displayed in Figure 3.8(b). This

synthetic training set is just the open curve version of the benchmark box-bump as

used in [19], with the bump feature further highlighted.

Control Point Knot Point

(a) Shape in quadratic B-spline of 12 control
points

1 2 3 4

(b) 4 B-splines curves superimposed

Figure 3.8. Line-bump training set represented as B-spline curves. nS = 4; p = 2.

The reparameterization functions are shown in Figure 3.9 where the color

field of Figure 3.9(a) signifies the original parameterization of Shape 1. It is also

shown as the identity function in Figure 3.9(b). Two reparameterization functions

Ra(u) and Rb(u) in Figure 3.9(b) are used to generate di↵erent parameterizations in

Figure 3.9(c) and Figure 3.9(d) respectively. Ra(u) curved downward with a slight

deviation from identity function makes the parameterization slightly squeezed toward

u = 0; Rb(u) curved upward with a large deviation from identity function makes the

parameterization severely squeezed toward u = 1.

We applied the three reparameterization functions to all B-spline represented

line-bumps. Figures 3.10 and Figure 3.11 respectively show the covariance matrix

norm and the largest eigenvalues of the line-bump under the three di↵erent repa-
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Figure 3.9. Di↵erent reparameterizations of line-bump shapes.
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Figure 3.10. Covariance matrix norm |C| under continuous formulation I (CI) and
formulation II (CII) with mid-point integration under three parameterizations for
the line-bump training set shown in Figure 3.8.
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(a) Formulation I
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Figure 3.11. Largest eigenvalue �1 under continuous formulation I (CI) and formu-
lation II (CII) with mid-point integration under three parameterizations for the
line-bump training set shown in Figure 3.8.

rameterizations for both formulations. The dotted straight lines in Figure 3.10(a)

and Figure 3.11(a) indicating the convergence limit for continuous formulation I are

computed by the analytical formula (3.30); the dotted straight lines in Figure 3.10(b)

and Figure 3.11(b) are computed by using nG = 20 Gauss quadrature points per knot

span. Figure 3.10(a) shows, with continuous formulation I, the matrix norms converge

to di↵erent values with the original parameterization and reparameterization Ra(u),

and Rb(u). On the other hand, with continuous formulation II as shown in Figure

3.10(b), the matrix norms all converge to the same value with three di↵erent repa-

rameterizations. Similar behaviors can be observed for the largest eigenvalue �1 as

shown in Figure 3.11. This shows that continuous formulation II is parameterization

independent and characterizes the intrinsic geometric property of shapes.

3.4.4 Optimizing shape correspondence. We extend the two continuous

formulations with mid-point based integration to optimization of shape correspon-

dence to examine how the landmark resolution and distribution in the usual discrete
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formulation would a↵ect the correspondence optimization. It is found that at a suf-

ficiently dense resolution of landmarks, the di↵erence between the two formulations’

approximation does not lead to significant disparities in the resulting shape corre-

spondence. However, when the number of landmarks nP drops to a certain level, the

two formulations often lead to entirely di↵erent results in the optimized group-wise

correspondence and/or landmark distribution. We show two examples below, which

illustrate the continuous formulation II’s advantage over formulation I in terms of

correspondence quality and faithful representation of the shapes.

3.4.4.1 Line-bump. For the line-bump training set consisting of nS = 4 B-spline

curves, nP = 19 landmarks are used to represent each shape instance and nb = 16

control coe�cients are used to model reparameterization B-spline for each shape

instance. The initial landmark configuration is shown in Figure 3.12(a), and the five

picked (the 5, 9, 10, 14, 16-th) landmarks A,B,C,D,E highlighted in green indicate a

poor initial correspondence where bump corners do not correspond across the training

set.

Correspondence optimization is conducted with the covariance matrix com-

puted by both continuous formulation I and II’s approximations. The optimization

history of DL objective function is shown overlapped in Figure 3.12(b), and the op-

timized reparameterization functions {Ri(u)} for formulation I and II are shown in

Figure 3.12(c) and (d) respectively. It is observed that formulation I causes an al-

most flat platform near the two ends while formulation II does not; this suggests

the formulation I could lead to a severe collapse of landmarks during correspondence

optimization. The collapsed landmarks near the two ends after correspondence opti-

mization for formulation I are shown in Figure 3.13(a), where there are barely any

landmarks used for representing the bump and the optimized correspondence hardly

has any improvements either as revealed by the locations of the five feature land-
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Figure 3.12. Shape correspondence optimization with the covariance matrix of con-
tinuous formulation I (CI) and formulation II (CII).
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marks. On the other hand, optimized landmark result in Figure 3.13(b) generated

by formulation II gives a remarkably enhanced correspondence as demonstrated by

the correspondence of the five feature landmarks A,B,C,D,E. Moreover, the optimized

landmarks form a more reasonable distribution and shape representation than that

of formulation I.

To further shed light on the di↵erences between the two formulations, the mean

shapes consisting of optimized landmarks are also plotted in Figure 3.13(c) and (d)

respectively for formulation I and II. Recall that as a result of the di↵erence between

(1.23) and (1.25) regarding the Jacobian term |J(u)|, the associated approximate

formulations (3.12) and (3.14) di↵er only in the length weight term �L(⇠j). The

main part in the integrand,
⇥
Si1(⇠j)� S̄(⇠j)

⇤T ⇥
Si2(⇠j)� S̄(⇠j)

⇤
, are the same; and

it is just the landmarks in a shape instance minus the mean shape landmarks. In

the second formulation, the collapsing of landmarks around point M as shown in

Figure 3.13(c) would have led to larger weight in �L(⇠j) for landmark M than that

in the first formulation. Thus, the second formulation has the e↵ect of alleviating

landmark collapse during correspondence optimization.

3.4.4.2 Distal femur. In this 3D real training set case of distal femurs, it has

nS = 10 B-spline surfaces, each of which is represented by a bi-quadratic B-spline

surface with 30⇥30 control points. nP = 31⇥31 landmarks are used to represent each

shape instance and nb = 8⇥8 control coe�cients are used to model reparameterization

B-spline for each shape instance.

The initial landmark configuration is shown in Figure 3.14(a). The optimiza-

tion history of DL objective function for both formulations is overlapped in Fig-

ure 3.14(b). The constraint history of Shape 9, g9(u) for enforcing the positivity of

Jacobian J (u) in (3.20), is shown in Figure 3.14(b), where optimized constraints

become active. The optimized reparameterization function {Ri(u)} parametric grids
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Figure 3.14. Correspondence optimization for 10 femur bones with the covariance
matrix of formulation I and II.



101

(a) Optimized landmarks using approximation of formula-
tion I: improved correspondence as indicated by reduced
DL objective function, but with rather insu�cient land-
marks for shape representation in the curved regions on
the two sides.

(b) Optimized landmarks using CII approximation: im-
proved correspondence as indicated by reduced DL ob-
jective function, and with improved correspondence and
with su�cient and reasonably distributed landmarks for
shape representation in the two curved regions.

Figure 3.15. The di↵erence between the mid-point integration of continuous formula-
tion I (CI) and formulation II (CII) for computing the covariance matrix can lead to
substantial di↵erence in the resulting shape correspondence after the optimization.
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for formulation I and II are shown in Figure 3.14(d) and (e) respectively.

The optimized landmarks for both formulations give comparable correspon-

dence improvements in terms of the three measures for statistical shape models (gen-

eralization ability, specificity and compactness [28]). However for formulation I, the

optimized landmarks are not distributed in a way to su�ciently represent the under-

lying shape due to under-sampling in the bump region as shown in Figure 3.15(a). In

contrast, formulation II not only gives comparable correspondence improvement, but

also provides a su�cient shape sampling and reasonable optimized landmarks distri-

bution as shown in Figure 3.15(b). This desirable feature of formulation II comes

from the shape Jacobian term and its approximation, i.e. the length/area weight

associated with landmarks, which incorporates the e↵ect of geometric variation from

each shape instances into the whole training set’s statistical shape variation.
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CHAPTER 4

APPLICATION TO AORTA

4.1 Introduction

4.1.1 Aortic disease study. Aortic diseases, including aneurysm of the ascending

(a) Ascending aorta (anterior view)

(b) Front view (c) Back view

Figure 4.1. Ascending aorta on heart with scanned data. Anatomical structure: 1)
Ascending aorta (tube portion); 2)Aortic arch; 3) Left coronary artery; 4) Left
coronary sinus; 5) Right coronary artery; 6) Right coronary sinus; 7) Non-coronary
sinus.

aorta and sinuses as well as calcification of the aortic valve, are significant causes of

morbidity and mortality. The ascending aorta is the tube portion of the aortic artery

starting from the upper base of left ventricle to the aortic arch where three branches
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originate from. Figure 4.1(a) ( courtesy of Cleveland Clinic Foundation) gives the

anatomical overview of the location of the ascending aorta along with sinuses on heart

in the anterior view of human body. The tube chunk shown consists of ascending aorta

1 (number legend) and aortic arch 2, separating roughly at the purple dotted section

lines. At the lower part of ascending aorta, there are three sinuses and two outgoing

arteries, i.e. left coronary artery 3 based on top of left coronary sinus 4; right coronary

artery 5 based on top of right coronary sinus 6; non-coronary sinus 7 (without no

artery coming out). Figure 4.1(b)(c) are the front and back views of the isolated

ascending aorta model in triangle mesh, where the sinuses are arteries highlighted

and numbered in consistency with Figure 4.1(a). The cut at the top side of the mesh

corresponds roughly to the section line between ascending aorta and aortic arch, as

denoted by the purple dotted line. The front view is in general di↵erent than the

anterior view, and it is chosen so that the left and right coronary 4 and 6 sinuses face

straight at us at the same time. Non-coronary sinus 7 is located at the opposite side,

as seen in the back view.

Aortic aneurysm can lead to dissection and rupture, two likely fatal events.

Aneurysms deemed at risk are surgically repaired by removing the dilated portion

of the vessel and removing it with a prosthetic graft. Aortic valve disease is also

often treated with prostheses. Traditionally, the diseased native aortic valve was

surgically removed and replaced with a prosthetic valve. More recently, aortic valve

disease has also been treated via transcatheter aortic valve (TAV) replacement, where

a prosthetic valve is deployed over the native valve leaflets. Biomechanics largely

dictates the success of these various treatments. For instance, a TAV device which

exerts excessive radial force may rupture the aortic root, whereas insu�cient radial

force may lead to device migration.

An understanding of the aortic biomechanics can o↵er scientific rationale to
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design better treatments for these conditions. Computational analyses, e.g. struc-

tural finite element (FE) and computational fluid dynamic (CFD) simulations, are

particularly useful for improving prosthetic device design because numeric analysis

allows for a fast and inexpensive way of analyzing conceptual designs and design

optimization [61]. However, the accuracy of these simulations are highly dependent

on the material properties, geometries, and boundary conditions prescribed; for the

human ascending aorta and aortic root, these parameters are not easily defined and

they can vary greatly from patient to patient. In the past, many groups have used

idealized aortic geometries to simplify their analyses, but this will detract from the

simulation accuracy.

In the past few years, clinical diagnostic imaging modalities have advanced

significantly. Today, multi-slice CT, MRI, and 3D echocardiography can o↵er high

resolution images of vasculatures that were previously unavailable. It is now feasible

to utilize such medical images to accurately reconstruct 3D geometries of arteries and

build computational models to perform structural analysis of the ascending aorta

and aortic root wall on a patient-specific level. Such analysis can be used for pre-

operative planning to determine the proper prosthetic device, size and positioning for

a particular patient. Currently, these type of decisions are made primarily based on

the physician’s intuition and experience.

The caveat is that the generation of patient-specific computational models

can be time-consuming. Often the anatomical geometries extracted from the clinical

imaging data are not suitable for computational analysis, i.e. the surface data is

too noisy or contains artifacts or holes, due to poor image resolution. As a result,

significant post-processing of the 3D geometry data is often necessary. In order for

the simulation-based pre-operative planning to be realistic in the clinical setting, this

process must be expedited.
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4.1.2 Rationale for statistical modeling of aorta. One possible solution to

this problem is to create statistical shape models (SSMs) for the ascending aorta and

aortic root. The mean ascending aorta and aortic root geometry could be mapped

directly to the raw surface data obtained from the clinical images for each new patient,

which will greatly reduce user input and consequently the time to complete the 3D

geometry reconstruction process for the incoming patient. Aortic SSMs will also

facilitate future probabilistic studies of the aortic biomechanics.

While patient-specific analyses are essential for accurate pre-operative plan-

ning, population-based probabilistic studies will be pivotal in the design of reliable

valve and vessel prostheses and implantation techniques. The design of these devices

should be robust to account for uncertainty in the tissue properties and anatomi-

cal geometries to avoid clinical adverse events and clarify patient selection criteria.

Probabilistic computational analysis permits a rigorous quantification of various un-

certainties and has been successfully applied to the design and analysis of a variety of

engineering systems, including space vehicles and automobiles [62], and more recently,

orthopedic implants [63, 64, 65, 66]. In a probabilistic ascending aorta and aortic root

computational model, the anatomical geometry will be defined as a random variable

with shape variation defined from the aortic SSMs.

4.1.3 Related work. Statistical shape modeling is a powerful tool to capture the

shape variation pattern across a group of shapes belonging to a certain shape class

[1]. SSM has seen many promising applications in a great variety of medical fields

such as image analysis [67], image segmentation [68][2], organ/bone shape reconstruc-

tion [69][70], treatment tracking [71], patient-specific simulation [72][73], diagnostics

[74][75][76] and femoral allograft [77] and cam femoroacetabular impingement [78].

The utility of the statistical model relies on a su�ciently large training set

data pool, and more importantly, a reasonably good correspondence across the entire
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training set. A good quality of the SSMs is usually obtained via manipulating cor-

respondence across the shape populations in order to optimize some quality metric,

e.g. the description length of the resulting SSM [19] [79]. The optimization is cur-

rently done via concatenation of multiple re-parametrization functions as proposed

in [28], which is subject to undesirable computational e�ciency. We propose a direct

reparametrization scheme with better e�ciency and use it in the statistical modeling

for aorta in this thesis. Our reparametrization function is represented by B-spline

coe�cients with di↵eomorphic constraints to guarantee a valid deformation field in

the parameter domain. The computation e�ciency is further improved with a dif-

ferentiable representation of training set shapes and the use of adjoint method for

computing analytical gradients with respect to optimization variables.

4.2 Training set data preprocessing

4.2.1 Mesh preprocessing. The raw input ascending aorta of six shape instances

are shown in Figure 4.2 with distinct colors. They all contain the ascending aorta tube

portion as the major part, but vary in the detailed features for sinuses and particularly

for coronary arteries. Since the outgoing arteries contain incomplete geometric data

due to unfavorable scan conditions (Shapes 1,3,4,5,6 missing left coronary artery,

Shape 1,2,3,5,6 missing right coronary artery), they will be excluded from major

tube part and we will focus on the sinus part and the tube portion. Table 4.1 lists

the IDs of the six contributing patients along with their respective gender and age

information. In order for the data to be processable by our proposed algorithm, the

raw training set must go through a series of preprocessing procedures that resolve

issues such as incomplete data, noise and smoothness etc.

4.2.1.1 Hole filling. Incomplete data is a common issue from reconstructed

mesh from CT scans. This usually comes in the form of holes, which can be grouped

into two types depending on the requirements of hole filling: 1) direct filling; 2)
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(a) Shape 1: 34.5K
vertices, 68.7K
faces

(b) Shape 2: 23.0K
vertices, 45.8K
faces

(c) Shape 3: 25.3K
vertices, 50.4K
faces

(d) Shape 4: 25.1K ver-
tices, 49.7K faces

(e) Shape 5: 21.1K
vertices, 41.9K
faces

(f) Shape 6: 21.3K
vertices, 42.0K
faces

Figure 4.2. Raw triangle meshes of aorta data in front view
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Table 4.1. Metadata of raw aorta models

Shape Patient ID Gender Age

1 1955746 Male 44

2 1986856 Male 42

3 1996415 Male 59

4 2066014 Male 37

5 2073023 Male 45

6 2214341 Male 49

(a) Mesh before filling (68.7K
faces)

(b) Mesh after filling (66.8K
faces)

Figure 4.3. Mesh hole filling and hole types. Type 1: direct filling (hole A); type 2:
flattening and filling (hole B and C)

hole flattening and filling. Type 1 is usually minor data loss and has mild curvature

variation in the vicinity; Type 2 is usually associated with a cut-o↵ artery stemming

from the sinus; in this case, direct filling of hole cannot recover the geometry at the

cut-o↵ location around the thin artery tube. The little influence of the artery tube

also makes it reasonable to remove the artery feature and seal the flattened hole o↵

before doing any direct hole filling.
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(a) Hole A: before filling (b) After filling

Figure 4.4. Direct hole filling for type 1 (hole A)

(a) The dangling feature to
remove for hole flattening

(b) Flattened holes (c) Holes filled

Figure 4.5. Flattening and filling for type 2 (hole B)
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Taking Shape 1 as an example in Figure 4.3(a), hole A located on the right

coronary sinus belongs to Type 1, which can be directly filled by mesh completion

algorithm as shown in Figure 4.4. The other two holes B (left coronary artery) and

C (right coronary artery) are of Type 2, where a feature removing step is necessary

before mesh completion algorithm is applied. Figure 4.5(a) shows the feature portion

around hole B expected to be eliminated, and a flattened hole in Figure 4.5(b) follows,

and in the end the mesh completion based on curvature constraint will result in the

filled hole show in Figure 4.5(c). Similarly hole C could be flattened and filled in the

same way, and the aorta mesh after the hole filling procedure is shown in Figure 4.3(b).

4.2.1.2 End trimming. The proposed algorithm currently can only handle

training set geometry topologically equivalent to a disc. The geometry in Figure 4.3(b)

after the hole filling is complete satisfies such criterion but wasted a rather large area

at the top end since the planar cut between ascending portion and aortic arch carries

little variation of the aortic tube surface. Therefore it is advisable to trim the top end

to an open end and map the remaining cylindrical part onto a square domain. The

top end trimming occurs as shown in Figure 4.6(c) compared to the original state in

Figure 4.6(a).

For the bottom part, the factor of noise and data separation all make the

bottom portion unreliable to faithfully represent the lower part of the ascending

aorta. The irregular mesh boundaries observed for Shape 1, 2, 4 and 6 in Fig-

ure 4.2(a)(b)(d)(f) have confirmed this need for the bottom end trimming. Addi-

tionally, when the bottom portion lacks data to be trimmed, as is the case for Shape

3 in Figure 4.2(c), the mesh boundary must first be extended to create enough data

to be trimmed based on the bordering mesh’s curvature information. The mesh after

bottom end trimming will look like Figure 4.6(d) where the mesh boundary becomes

much more regular and smooth. After the top and bottom trimming, the aorta mesh



112

(a) Bottom and top ends before
trimming (66.8K faces)

(b) Mesh after trimming
(44.7K faces)

(c) Trimming at top end (d) Trimming at bottom end

Figure 4.6. Trim mesh at top and bottom
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becomes Figure 4.6(b) and the number of faces drops from 66.8K to 44.7K.

Since the correspondence of the boundaries are assumed to be fixed and only

the interior correspondence is optimized in our approach, it is also desirable that the

manual trimming position of all the six shapes are at approximately the corresponding

location across the entire training set.

4.2.1.3 Smoothing and decimation. The illustrative data obtained till trimming

(a) Mesh after trimmed
(22.7K vertices, 44.7K
faces)

(b) Mesh after smoothing
(18.9K vertices, 37.4K
faces)

(c) Mesh after decimation
(5.1K vertices, 10.1K faces)

Figure 4.7. Mesh smoothing and decimation

is shown in Figure 4.7(a). To further reduce noise, we apply a smoothing filter on the

mesh based on local mesh curvature to obtain the smoothed mesh in Figure 4.7(b),

where the number of faces drops from 44.7K to 37.4K. For a more compact represen-

tation, the smoothed mesh is further decimated from 37.3K to 10.1K.

During the entire mesh pre-processing procedures comprising hole filling, end

trimming, smoothing and decimation, the number of vertices and triangle faces in

general will change. Table 4.2 keeps track of this information as each procedure

progresses.
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Table 4.2. Vertex and triangle numbers during SSM pre-processing.

Vertex#
(Face#)

Raw Filled Trimmed Smoothed Decimated

Shape 1
34569
(68717)

33531
(66838)

22774
(44734)

18927
(37405)

5116
(10099)

Shape 2
23049
(45828)

20739
(41300)

16814
(32871)

13994
(27571)

5162
(10199)

Shape 3
25345
(50441)

25939
(51766)

20945
(41002)

17324
(34146)

5185
(10243)

Shape 4
25102
(49714)

22861
(45558)

18823
(36745)

15547
(30591)

5117
(10094)

Shape 5
21097
(41940)

21431
(42764)

17882
(30540)

14402
(28409)

5179
(10227)

Shape 6
21271
(42047)

20903
(41663)

17242
(33651)

14436
(28469)

5188
(10248)

4.2.2 Training set B-spline fitting.

4.2.2.1 One-time mesh alignment. In the correspondence optimization, the

(a) Before alignment (b) After alignment

Figure 4.8. six meshes before and after one-time alignment with ICP algorithm

alignment process is discarded for additional speed gain. This requires the shapes
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should already be aligned before they are fed into the optimization algorithm. There-

fore, we perform a one-time alignment of the triangle meshes before the actual opti-

mization. As suggested by the last column in Table 4.2, the number of vertices of all

aorta meshes after the mesh preprocessing is not identical across the trainings set, and

the Iterative Closest Point (ICP) algorithm is employed to align these meshes. Before

alignment, the six triangle meshes are superimposed and shown in Figure 4.8(a). The

ICP aligned meshes of training set are shown in Figure 4.8(b), where the six meshes

are brought to a much better alignment state.

4.2.2.2 Generatrix determination. Recall that our SSM algorithm requires

(a) Left view (b) Front view

Figure 4.9. Generatrix determination. Number legend: 4). Left coronary sinus; 6).
Right coronary sinus; 7) Non-coronary sinus

a square domain, whereas the current triangle mesh is topologically equivalent to a

cylinder. One simple way to resolve this topological discrepancy is to cut the mesh

along a line and unfold and map it onto the square domain; this cutting line is the

“generatrix” to be determined. Since it is better to leave the area between the left

and right coronary sinuses (i.e. 4 and 6) intact from whatever influence brought by

the cutting line, the cutting line is placed on the back side between the right coronary
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sinus 6 and the non-coronary sinus 7 as shown in Figure 4.9(a).

(a) Shape 1 (b) Shape 2 (c) Shape 3

(d) Shape 4 (e) Shape 5 (f) Shape 6

Figure 4.10. Generatrix on all the six shapes in left view

Again taking Shape 1 as an example, the first step is to manually specify

vertex A, which lies at a valley point between 6 and 7. Then the Dijkstra’s algorithm

is utilized to find a vertex at the bottom and top boundaries with the shortest geodesic

distance to A along mesh edges. Comparing within boundary vertices at bottom and

top side gives vertex B and C; connecting A with both B and C results in line BAC

as the generatrix shown in Figure 4.9(b) in the front view. Repeating these steps give

the generatrix lines for the remaining five shapes as displayed in Figure 4.10.
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4.2.2.3 Mesh parametrization. After the generatrix is available for each shape,

it is safe to cut along it, and the generatrix edge line on the mesh will serve as the

image mapped to two opposite sides of the square parameter domain. The generatrix

and bottom and top boundaries are highlighted in green in Figure 4.11(a). The two

vertices of the generatrix at bottom and top serve as the four corner vertices of the

square domain as shown in Figure 4.11(b).

Suppose each raw shape instance TDi is represented by a triangulated mesh

consisting of vertex list Vp = {pj}(j = 1, ..., nv) with associated triangle list T =

{Tk}(k = 1, ..., nt), where the j-th vertex is pj = [xj, yj, zj]. The k-th triangle is of

vertex index set Tk = [⌧k1, ⌧k2, ⌧k3], and nv and nt are the number of vertices and

triangles respectively. The mesh parametrization procedure contains two steps: 1)

initial parametrization; 2) parametrization improvement by minimizing distortion.

Initial parametrization. Mesh parametrization seeks to find a mapping of

vertices between the physical domain and the parameter domain i.e. VU = {uj} =

{uj, vj}. If a square parameter domain is chosen, the nb boundary vertices parameters

set Ub = (un
e

+1, ...,un
v

) on the four sides could be either manually determined by

known correspondence, or by the correspondence manipulation for 2D case, where

ne = nv � nb is the number of interior vertices. The standard approach to obtain a

mesh parametrization without fold-over is to consider the edges of the triangle mesh

to be a spring web connected at vertices [80]. In this spring model, the minimum

spring energy state is reached when each interior parameter point uj is an a�ne

combination of its neighbors, i.e.

uj =
X

k2N
j

wjkuk,

s.t.
X

wjk = 1,

(4.1)

where wjk is the normalized weight coe�cients of the neighbor set Nj for the j-th



118

parameter point. Separating interior and boundary vertices gives

uj �
X

k2N
j

,kn
e

wjkuk =
X

k2N
j

,k>n
e

wjkuk. (4.2)

This reduces to solving two linear systems

AU = Ū and AV = V̄ , (4.3)

where U and V are the interior parameters to solve and Ū and Ū are the boundary

parameter conditions; ne⇥ne weight coe�cient matrix A = (aij)i,j=1,...,n
e

has elements

aij =

8
>>>>>><

>>>>>>:

1 if j = k

�wjk if k 2 Nj

0 otherwise

(4.4)

Parametrization distortion minimization. There exist several options for

assigning weight coe�cients including constant (mesh geometry irrelevant) [57], and

other geometry-aware barycentric coordinates such as Wachspress, Discrete harmonic

and Mean value coordinates. These weighting options all lead to a valid parametriza-

tion but in general the mesh distortion introduced is rather high. Therefore, a mesh

distortion reduction procedure should follow the initial parametrization. A simple

method we employ comes from [58], where a mesh distortion measure called “stretch”

is minimized.

Consider a mesh triangle T P = (p1,p2,p3) in physical domain and its corre-

sponding triangle TU = (u1,u2,u3) in parameter domain. This defines a one-to-one

mapping from the parameter to the physical domain, i.e. S : TU ! T P . If the maxi-

mal and minimal eigenvalues of the metric tensor induced by S are denoted by �(T )

and �(T ), the triangle stretch in the k-th triangle of the mapping or parametrization

S could be characterized by

�(Tk) =

r
�2(Tk) + �2(Tk)

2
. (4.5)
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Then the stretch of each vertex is defined by

�(uj) =

sP
A(Tk)�2(Uk)P

A(Tk)
, (4.6)

where A(T ) is the area of triangle T and the sums taken over all triangles Tk that

have pj as a vertex. The weights in (4.4) for the (h + 1)-th iteration are updated

according to the vertex stretch value at the current h-th iteration by

wh+1
jk =

wh
jk

�(uh
j )
. (4.7)

The stopping criterion is based on the global stretch metric defined by

Eh =

sPn
t

k=1 Ak�2(T h
k )Pn

t

k=1 Ak
. (4.8)

Iteration stops if Eh+1 > Eh, meaning there is no room to relax the stretch and

distortion. Finally {uh+1
j } will be output as the optimized parameters, and the mesh

parametrization S is established. This approach could significantly reduce the mesh

distortion introduced by parametrization.

(a) Physical domain (b) Parameter domain

Figure 4.11. Mesh parametrization
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4.2.2.4 Regular sampling. With an established parametrization mapping the

parameter domain to the physical domain, it is time to generate a regular grid by sam-

pling at a regularly spaced point in the parameter domain as shown in Figure 4.12(a).

Specifically for each shape, nM sampling parameters {ml}(l = 1, ..., nM) will

be regularly placed within the parameter domain [0, 1] ⇥ [0, 1] where each sampling

parameter point ml = (ul, vl) results in a sampled point ql on the physical mesh.

The sampling is computed based on the previously obtained parametrization S by

barycentric interpolation

ql = �1,lp1 + �2,lp2 + �3,lp3, (4.9)

where the barycentric coordinates are determined by the area fractions of the three

sub-triangles formed by connecting ml with u1, u2 and u3

�1,l =
A(ml,u2,u3)

A(u1,u2,u3

,

�2,l =
A(u1,ml,u3)

A(u1,u2,u3

,

�3,l =
A(u1,u3,ml)

A(u1,u2,u3

,

s.t. �1 + �2 + �3 = 1,

(4.10)

Here a regularly spaced grid of resolution 51 ⇥ 51 are sampled as seen in the

zoomed-in local view Figure 4.12(b). The sampling involves interpolation of barycen-

tric coordinates and the sampled grid in the front and left view in Figure 4.12(c)

and (d). The yellow and blue spheres are the bottom and top end vertices of the

generatrix line.

4.2.2.5 B-spline fitting. Base on the coordinates of the regular grid of 51⇥51 data

points, it is time to use the global approximation technique described in [32] for fitting

a B-spline surface as shown in Figure 4.13(a)(b) in the front and left view respectively.

The B-spline control point resolution is set to be 30⇥ 30 and the degree along u- and
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(a) Regular sampling grid in parameter
domain

(b) Zoom-in view

(c) Sample grid in physical do-
main (left view)

(d) Front view

Figure 4.12. Regular grid sampling
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v-direction are both quadratic. The B-spline is re-visualized with knot lines shown in

Figure 4.13(c)(d). The generatrix line can be also shown in Figure 4.13(d), and the

B-spline training set of six instances are shown in Figure 4.14.

(a) Surface (front view) (b) Surface (left view)

(c) With knot lines (front view) (d) With knot lines (left view)

Figure 4.13. B-spline fitting

4.3 SSM results

The raw training set in triangle meshes have been processed into di↵erentiable
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(a) Shape 1 (b) Shape 2 (c) Shape 3

(d) Shape 4 (e) Shape 5 (f) Shape 6

Figure 4.14. Training set B-splines
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B-spline representation. The reparametrization function is governed by a bi-quadratic

B-spline at coe�cient resolution of 12 ⇥ 12. The reference shape is chosen to be

Shape 1, whose sampled landmarks remain fixed throughout the optimization. The

optimization is achieved by the Sequential Quadratic Programming (SQP) optimizer.

The convergence criterion is that the relative change in DL objective function at the

k-th iteration drops below a threshold ", i.e.
���DL(k)�DL(k�1)

DL(0)

��� < ", and here " = 10�6.

The optimization takes 439 iterations and 2293.9 seconds to converge, and the DL

drops from 98.7 to 92.8.

The history of aggregated constraint for all the non-reference Shapes 2,3,4,5,6

is shown in Figure 4.16(b). It is seen that at the last iteration, some of the constraints

are active, and a previously violated constraint will be rectified to valid to ensure the

di↵eomorphism and prevent self-intersection of reparametrization function.
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(a) Objective function DL
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(b) Aggregated constraints

Figure 4.15. Optimization history

The deformed grid under the optimized reparametrization function for Shape

2 D2(u) is shown in Figure 4.16(a), and it is seen that the interior B-spline control

coe�cients while the boundary B-spline coe�cients are fixed. Figure 4.16(b) displays

the corresponding Jacobian field.
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v

 R(u,v): Shape 2

(a) Deformed landmark grid under the
optmized D2(u)

(b) Jacobian field with reparmetrized parameter do-
main

Figure 4.16. Deformed grid under optimized reparametrization function D2(u)

The first two modes are shown in Figure 4.17 where � is the parameter value

along mode directions and � is the variation along mode direction. The parameter

values is chosen at � = �3, 0,+3 since the [�3,+3] range will cover 97.7% of the pos-

sible shape variation along a particular mode. It is seen that after the correspondence

optimization, the first two modes together account for 78.3% of the total variation

of all possible variation patterns. Mode 1 and 2 have characterized the changing of

diameter of the aorta tube and also the size changing at the left coronary sinus.

Lastly, we use the three statistical model evaluation measures [11], i.e. general-

ization, specificity and compactness error to analyze the e↵ectiveness of our proposed

algorithm.

The generalization error measures the ability of the SSM to extrapolate any

valid instance that is not a member of the training set but belongs to the shape class.

The error is calculated by the leave-one-out test, where each instance is left out and

the remaining nS � 1 shapes are used to generate statistical model and the left-out

instance is reconstructed by projecting it onto the eigenmode directions, and finally

the error is identified as the di↵erence between the left-out instance and its recon-
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(a) Mode 1: �1 = �3
p
�1 (b) Mode 1: �1 = 0 (mean) (c) Mode 1: �1 = +3

p
�1

(d) Mode 2: �2 = �3
p
�2 (e) Mode 2: �2 = 0 (mean) (f) Mode 2: �2 = +3

p
�2

Figure 4.17. The first 2 modes of statistical model for distal femur data after opti-
mization. �1 = 1.71(64.5%),�2 = 0.37(13.8%).
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Figure 4.18. SSM evaluation before and after optimization
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struction. The specificity error measures the ability of SSM to only represent instance

that belongs to the shape class. The computation goes as follows, a large number

of randomly generated instances are obtained by SSM and the error is identified as

the di↵erence between the random instance and its closest training set instance. The

compactness error is the sum of eigenvalues of variations that measure how compact

the SSM is in the shape space. It is seen from Figure 4.18 that these three errors

have all decreased from initial correspondence to the optimized correspondence.

Here some comments on landmark number nP and the number of shapes nS

in the real training set data situation. A practical rule for choosing the landmark

number is that the landmarks should be a su�cient representation of the original

shape meaning that none of geometric features is left out. One way to quantify this

condition is check the relative distance error bound to the original shape. As for shape

number, due to the limited data source, the training set in this application comes from

only six patients. This small population is in general not statistically meaningful in

the sense that the shape modes have limited use; however it is more important to

establish that our proposed method can be successfully applied to shapes with certain

topological complexities commonly see in the medical fields. It is believed that the

proposed algorithm can give more reliable modes if there are more shape instances

coming into our training set pool in the future.
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CHAPTER 5

APPLICATION TO PROXIMAL FEMUR

5.1 Introduction

Femoroacetabular impingement (FAI), is a syndrome when the femoral head

ball runs abnormally or prohibits a normal range of motion in the acetabular socket.

This happens due to ill-shaped hip bones, i.e. the proximal part of femur bone

and/or the acetabular socket bone on pelvis. As they do not fit together perfectly,

the rubbing against each other causes damage to the joint. Figure 5.1(a) displays the

healthy ball-and-socket anatomical structure at the hip joint, where no impingement

occurs. Depending on which side of the joint develops shape abnormality, there are

three types of FAI:

• Cam. Occurs when extra bone extends along the upper surface of the femoral

head ball, which is not round and cannot rotate smoothly inside the acaetabu-

lum socket, as seen in Figure 5.1(b). This type of impingement leads to cartilage

lesion inside the acetabulum.

• Pincer. Occurs when excessive bone material grows beyond the normal rim

of the acetabulum cup as highlighted in red in Figure 5.1(c). This type of

impingement often crushes the labrum.

• Combined. Mixture of both.

As a preliminary study, this thesis will only focus on the cam type impingement and

apply the proposed method to a data set of proximal femurs, and the influence on

the acetabular side of the joint is ignored for the moment.

5.2 Training set data preparation
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(a) Healthy hip joint

(b) Cam impingement (c) Pincer impingement

Figure 5.1. Femoroacetabular impingement (FAI). Courtesy of American Academy
of Orthopaedic Society (AAOS)
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5.2.1 Raw data denoising, smoothing and decimation. Thanks to Rush

University Medical Center, 29 proximal femur bone in the form of triangle mesh have

been collected for statistical analysis using our proposed approach. The 29 proximal

femur bones come from 17 patients, and there are 13 healthy bones and 16 unhealthy.

The health status label is determined by whether the patients are experiencing a hip

joint pain in testing joint movements.

Table 5.1 lists a comprehensive set of meta data information of all proximal

femur meshes. Each shape has an original “.STL” file name and assigned a shape

ID. The prefix “HIP” stands for hip joint femoral data, the two digits that follows

denotes the patient number, where each patient provides femur bone data on one

side or both sides. The first letter after hyphen marks healthy status: “F” means

unhealthy when hip joint pain exists (Bad health) and “N” mans “healthy” without

pain (Good health). The following letter reveals the side the femur and it is either a

“L” (left) femur or “R” (right) femur. These information annotations form the first

five columns in the table. The last two columns indicates the number of vertices and

triangles of the proximal meshes. The vertex number ranges from 4274 to 36720.

The raw data meshes contain a good amount of outliers, noise and incomplete

data. It’s advisable to pre-process the mesh for better mesh quality in downstream

procedures. Take one shape as an example, the original raw mesh in Figure 5.2(a)

contains a few outlying triangles and un-smooth regions resulting from error during

the course of MRI acquisition and mesh reconstruction. The superior part on the

femur head contains an artificial platform as a result of misplaced cutting and closing.

The mesh defects are resolved by denoising and smoothing and the new mesh is

shown in Figure 5.2(b) with greatly enhanced mesh quality. For the purpose of

e�cient feature to storage ration, the mesh is further simplified to the one shown in

Figure 5.2(c).
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Table 5.1. 29 proximal meshes information: Shape ID, STL file name, Patient ID,
Side, Health, Vertex Number, Triangle Number. 29 meshes from 17 patients; 13
healthy, 16 unhealthy

ID STL Patient Side Health
Vertex
Number

Triangle
Number

1 HIP01-FRF A(01) Right Bad 14949 29890

2 HIP01-NLF A(01) Left Good 13876 27724

3 HIP02-FRF B(02) Right Bad 16459 32886

4 HIP02-NLF B(02) Left Good 17259 34490

5 HIP04-FLF C(04) Left Bad 4376 8748

6 HIP04-NRF C(04) Right Good 4274 8544

7 HIP05-FLF D(05) Left Bad 36720 73436

8 HIP07-FRF E(07) Right Bad 29826 59648

9 HIP07-NLF E(07) Left Good 28316 56628

10 HIP10-FRF F(10) Right Bad 16730 33456

11 HIP10-NLF F(10) Left Good 16508 33012

12 HIP11-FRF G(11) Right Bad 16854 33700

13 HIP11-NLF G(11) Left Good 16732 33452

14 HIP13-FLF H(13) Left Bad 20121 40234

15 HIP13-NRF H(13) Right Good 20687 41358

16 HIP14-FRF I(14) Right Bad 25052 50100

17 HIP14-NLF I(14) Left Good 25098 50192

18 HIP15-FLF J(15) Left Bad 22538 45072

19 HIP15-NRF J(15) Right Good 21944 43884

20 HIP16-NLF K(16) Left Good 13929 27854

21 HIP21-FRF L(21) Right Bad 6595 13186

22 HIP21-NLF L(21) Left Good 6500 12996

23 HIP22-FLF M(22) Left Bad 34516 69028

24 HIP23-FRF N(23) Right Bad 9288 18568

25 HIP23-NLF N(23) Left Good 9056 18018

26 HIP24-FLF O(24) Left Bad 31362 62720

27 HIP26-FLF P(26) Left Bad 12522 25040

28 HIP26-NRF P(26) Right Good 12906 25808

29 HIP27-FRF Q(27) Right Bad 6530 13048
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(a) Raw mesh (32886 triangles)

(b) Smoothed (32642 triangles) (c) Decimated (8000 triangles)

Figure 5.2. Data denoising, smoothing and decimation
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5.2.2 Feature identification, orientation and mesh cutting. Next two feature

(a) Two feature vertices (b) Anterior-
Posterior

(c) Medial-Lateral

Figure 5.3. Two feature vertices identified (fovea in red, less trochanter eminence in
blue) and proximal femur orientation

vertices are marked on each shape mesh as geometric guide for subsequent operations,

the first feature vertex is located at the fovea and the second feature vertex at less

trochanter eminence. Figure 5.3(a) shows the locations of the two feature vertices on

one example shape.

Since the raw data is closed mesh and our algorithm works on geometry that

is topologically equivalent to a disk, it is necessary to cut the bottom o↵ and form

an open mesh to make the proximal femur topologically compatible. The planar cut

is chosen as a simple viable way. As the cutting plane requires an orientation, it

is important that all the femurs should be reoriented consistently across the entire

training set of shapes. The non axis aligned bounding box [81] of all the mesh

vertex points becomes useful in this situation. In the first step, the principal axis

of the obtained bounding box with shortest span (the third axis shown in blue in

Figure 5.3(b)) is aligned with the anterior-posterior direction. Then in the second

step the whole femur (including the unshown femur shaft and distal portion) axis is
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manually decided to be the gray dotted line in Figure 5.3(c), which is aligned with

the superior direction. The first step is done automatically and the second step is

semiautomatic due to the involved manual axis determination process. After this

reorientation, the femur meshes are brought to a stance that is close enough to its

natural orientation on the patient’s body.

Recall from Table 5.1 that there are 13 right femurs and 16 left femurs, in

order for the ease of correspondence discussion, we convert all left proximal femurs

into right ones by flipping them about the sagittal plane so that all the proximal

femurs are right femur.

(a) Cutting plane through feature point 2 (b) Mesh after planar cut

Figure 5.4. Proximal femur mesh with planar cut

After the superior orientation has been established, the mesh is cut by a planar

whose normal aligns with superior direction (facing up) and that passes through

feature point 2 in green (less trochanter eminence) as seen in Figure 5.4(a). The

remaining mesh in Figure 5.4(b) with boundary in purple is an open mesh of interest

on which our proposed method will be run on.

5.2.3 ICP alignment. With all the meshes cut into open mesh, the Iterative

Closest Point (ICP) algorithm [82] is employed to bring them into better alignment.
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(a) Before alignment (b) After alignment

Figure 5.5. Mesh alignment by Iterative Closest Point algorithm

Figure 5.5(a) and (b) show the 29 femur meshes before and after the ICP alignment.

5.2.4 B-spline fitting. Since our proposed direct reparametrization method takes

a training set of B-spline geometry as input, what needs to be done is the B-spline

fitting of the proximal meshes. As B-spline inherently implies a parametrization, the

B-spline fitting often starts with a mesh parametrization operation that maps the

mesh to a regularly shaped parameter domain. The topic of mesh parametrization

is extensively and deeply discussed in the graphics community [57][33]. The current

open mesh of proximal femur has a topology equivalent to a disk and can be mapped

to a square parameter domain directly, where the mesh boundary corresponds to

the four square sides. However, this mapping option is unable to the control the

parametrization quality in the interior, and the resultant B-spline su↵ers from severe

creases in the femur neck area. This is because that the iso-parametric lines the

two parametric directions U and V are meeting at a small angle far away from 90�.

In the square parameter domain, the iso-parametric lines along U and along V are

perpendicular everywhere; in the physical domain, a larger deviation from right angle

of the meeting between iso-parametric U lines and iso-parametric V lines, a larger
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angle distortion is introduced, making the fitted B-spline more likely to be in poor

quality.

Solve harmonic V field. In order to monitor the parametrization quality

(a) Boundary condition (b) Harmonic V field

Figure 5.6. Mesh alignment by Iterative Closest Point algorithm

that direct a↵ects B-spline surface quality, the harmonic field method [83] is utilized

to compute a high quality mesh parametrization in the sense that iso-parametric lines

along U and V directions meet perpendicularly nearly everywhere on the mesh. At the

first stage, a harmonic V-field is to be calculated by solving a discrete Laplace equation

that is constrained on the mesh surface and subject to Dirichlet boundary conditions

(BC). Specifically as displayed in Figure 5.6(a), the pre-selected fovea vertex (red) has

V = 1 and all the boundary vertices (blue) has V = 0. The discrete Laplace operator

is equivalent to setting each internal vertex’s V -value to the weighted average of all

its neighbors’ V -values. Doing this for all internal vertices leads to a linear system of

equations, and the selection of averaging weights has influence on the parametrization

result. As recommended by [83] [84], here the Discrete Harmonic weights are chosen

to find the V -field shown in Figure 5.6(b). The result can be regarded as a steady
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state temperature field after a heat source is placed at fovea vertex.

Solve harmonic U field. After obtaining V -field, a vertex at boundary is

(a) Generatrix tracing along rV (b) Opposite generatrix tracing along rV

Figure 5.7. Mesh alignment by Iterative Closest Point algorithm

selected as the anterior-medial corner, and will be referred to as “generatrix start”.

It is shown in blue in Figure 5.7(a). A gradient line is then traced starting from the

generatrix start and along the gradient direction of the V -field rV . The computation

of rV with a mesh triangle with harmonic field V is described in [83]. The traced

line will be called “generatrix” and is colored in green in Figure 5.7(a). Another

boundary point, cyan in Figure 5.7(b), can be picked at halfway of generatrix start,

and it is called “opposite generatrix start”. Tracing from this point produces another

gradient line, which is shown in orange and called “opposite generatrix”. The naming

comes from the intension of mapping the proximal mesh onto a cone, where the fovea

corresponds to the apex and the generatrix gradient line the generatrix.

These two traced gradient lines are then added into the mesh and will serve

as the boundary condition of solving the harmonic U -field. It is seen in Figure 5.8(a)

that the two gradient lines divide the mesh into two regions. With each region, the

regional harmonic U -field can be solved by the harmonic field method described earlier
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(a) Boundary conditions (b) Two regionsl harmonic U -fields

Figure 5.8. Regional harmonic U -field

where the Dirichlet boundary conditions are both: U = 0 on the generatrix (blue),

and U = 0.5. on the opposite generatrix (red). The regional harmonic U -fields are

solved and shown in Figure 5.8(b).

(a) Posterior viewpoint (b) Anterior viewpoint

Figure 5.9. Harmonic U -field after reconciliation

The two regional U -fields can be reconciled to form a consistent harmonic U -

field by keeping one unchanged and scaling the other. After reconciliation, the whole
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harmonic U -field is shown in Figure 5.9(a) where the discontinuity at U = 0.5 of

opposite generatrix disappears. The only discontinuity remains at U = 0 (also U=1)

at the generatrix as observed in Figure 5.9(b).

(a) Iso-parametric stripes along V direction (b) Iso-parametric stripes along U direction

(c) Iso-parametric checkerboard

Figure 5.10. Iso-parametric lines and mesh parametrization

Now every vertex, except fovea and generatrix vertices have unique U - and

V -values, which direct leads to a mapping onto the parameter domain. The isopara-

metric lines along U and V directions are displayed in stripes plotted in Figure 5.10(a)
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and (b). The overlaid stripes shows the parametrization checkerboard, which the iso-

parametric lines in the two parametric directions meet at right angle everywhere on

the mesh except near fovea vertex. This suggests that a conformal mapping has been

established that preserves the angle.

Mesh parametrization improvement. The parametrization just achieved

(a) Posterior viewpoint (b) Anterior viewpoint

0 0.5 1
0

0.5

1

u

v

(c) Posterior viewpoint

0 0.5 1
0

0.5

1

u

v

(d) Anterior viewpoint

Figure 5.11. Mesh parametrization improvement

has built a mapping from the the proximal femur mesh in the physical domain to the
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square parameter domain. What lies in between in the mapping is an intermediate

cone domain, and it can be thought of as being formed by joining the two sides

of the square and collapsing the top side. In order for a better visualization of this

parametrization from the mesh through cone domain to square domain, Figure 5.11(a)

and (b) show the fovea in red (cone apex), generatrix in green (cone generatrix)

and opposite generatrix in orange. These three entities will be mapped to the top

side (red), left and right sides (green) and middle line (orange) respectively in the

square domain as seen in Figure 5.11(c). Notice that the left and right sides (green)

correspond to the same generatrix gradient line in physical domain, and entire the

top side (red) vertices in the square parameter domain all correspond to only one

vertex, i.e. the fovea vertex. The gray triangles signifies all incident triangles to the

fovea vertices.

Regular sampling and B-spline fitting. Next a regular grid of sampling

parameters denoted by the purple dots in Figure 5.11(c) is used to generate a counter-

part in the physical domain as seen in Figure 5.12(a). The grid shown in of resolution

15 ⇥ 15, and a regular grid of resolution 200 ⇥ 200 is actually used to serve as the

fitting data. The B-spline in Figure 5.12(c) is fitted from the data by minimizing the

least square with respect to control positions according to the techniques prescribed

in [32].

Figure 5.11(c) reveals one problem that quite a large portion of the sampling

parameters are within the triangles incident to the fovea vertex; this leads to over-

sampling in this reliable area and undersampling in other more important areas such

femur neck and trochanter etc. This unreasonable sampling pattern is caused by the

existing mesh parametrization shown in Figure 5.11(c), where the small number of

the gray shaded triangles in the square parameter domain account for almost 20% of

the entire domain area.
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(a) Before improvement: knot lines crowded
near fovea

(b) Before improvement: knot lines more evenly
distributed

(c) Before improvement: knot lines crowded near
fovea

(d) Before improvement: knot lines more evenly
distributed

Figure 5.12. Fitted B-spline improvement
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For the purpose of alleviating this issue, one viable solution is to adjust the

vertices along only the U and V direction so as to preserve the connectivity. The im-

provement can be done by an optimization problem which minimize the mesh stretch

[58] with a reparametrization B-spline coe�cients at the two directions as design vari-

ables. After optimization, the mesh parametrization sees remarkable improvement in

Figure 5.11(d). The improved parametrization in turn leads to a more reasonable

sampling distribution in the physical domain as shown in Figure 5.11(d). Ultimately

the fitted B-spline is much better parametrized as exhibited by its knot line patterns,

where there are far fewer knot lines near fovea and more in other important areas

after parametrization improvement. All the 29 proximal femurs will be processed

with this routine for the preparation of B-spline training data.

5.3 Correspondence optimization and statistical analysis

5.3.1 Correspondence optimization and results. The 29 proximal B-spline

surfaces are divided into two groups according to their health status, one is healthy

group of 13 B-spline surfaces, and the other unhealthy group with 16 B-splines. The

proposed algorithm in previous chapters are used within each group and two statistical

models can be obtained accordingly. For both groups, 51 ⇥ 51 landmarks are used

and 9⇥ 9 reparametrization B-spline are employed.

5.3.1.1 Optimization history. The optimization history of objective function

(description length) and aggregated constraint of Jacobian are recorded and plotted

in Figure 5.13(a) and (b) respectively for the healthy group. Similar plotting is

done for unhealthy group as well and the history is shown in Figure 5.14. It is seen

that the objective function value has dropped after optimization and some of the

di↵eomorphism constraints have become active at the ending optimized iteration.

5.3.1.2 Statistical model evaluation measures improvement. Again the
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(a) DL history (b) Constraint history

Figure 5.13. Correspondence optimization history for HEALTHY group

(a) DL history (b) Constraint history

Figure 5.14. Correspondence optimization history for UNHEALTHY group
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Figure 5.15. SSM evaluation improvement for HEALTHY group

optimization results have been tested for improvement in terms of the three statistical

model evaluation measures proposed in [28]. The generalization ability, specificity

and compactness measures have all seen improvements after performing our proposed

optimization algorithm as observed in Figure 5.15 for healthy group and Figure 5.16

for unhealthy group.
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Figure 5.16. SSM evaluation improvement for UNHEALTHY group

5.3.1.3 Correspondence improvement. In addition to SSM evaluation measure

improvement, the correspondence across shapes has improved as well. Figure 5.17(a)

shows a feature point (trochanter eminence) fixed on the reference shape is in red; its

corresponding feature point on a non-reference shape before optimization is shown in

red as in Figure 5.17(b), the two points are not in a good correspondence.



147

(a) Reference shape feature point 1 (b) A non-ref shape feature point 1 before
(red) and after (dark red) optimization

(c) Reference shape feature point 2 (d) A non-ref shape feature point
2 before (red) and after (dark
red) optimization

Figure 5.17. Point correspondence improvement on HEALTHY group
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After optimization, the corresponding point of feature point moved to dark red

point, which indicates a better correspondence as it moves closer to the trochanter

eminence on the non-reference shape. Another feature point in blue as shown in

Figure 5.17(c) and (d), where similar correspondence improvements are experienced.

(a) Reference shape feature point 1 (b) A non-ref shape feature point 1 before
(red) and after (blue) optimization

Figure 5.18. Feature line correspondence improvement on HEALTHY group

To further explore the correspondence improvement, we identify a feature line

on shapes by connecting a series of landmark parameter points as shown in Fig-

ure 5.18(a), where the feature line is chosen to be the intertrochanteric line. Before

optimization, the corresponding line (red) of the feature line of reference shape is not

quite the intertrochanteric line; after optimization the location of corresponding line

has moved to a position (blue) that better characterizes the same semantic feature

line. Similar results are observed for unhealthy group as shown in Figure 5.19.

As stated previously, the quality of group-wise correspondence directly a↵ect

the quality of SSM, therefore here it is necessary to analyze the improvement of

correspondence so that the statistical model obtained later faithful reflect the shape

variational pattern of the input training set.
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(a) Reference shape feature point 1 (b) A non-ref shape feature point 1 before (red)
and after (blue) optimization

Figure 5.19. Feature line correspondence improvement on UNHEALTHY group

5.3.2 Statistical modes and analysis.

5.3.3 Statistlca model and modes. The statistical model, i.e. the mean shape

(a) Head (b) Neck valley (c) Neck

(d) (e) (f)

Figure 5.20. Healthy group: first three modes on top of mean shape
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and modes, are immediately available once the optimized group-wise correspondence

has been found.Figure 5.20 shows the first three modes of healthy group, where the

mean shape is compared with the +3�m mode shape for m = 1, 2, 3, and in both

anterior and posterior views. The color field represents the shell distance from the

mean shape to the mode shapes along the vertex normals on the mean shape, it

reflects the shortest moving pattern of a particular mode. The first mode of appears

to capture the femur head ball enlarging and the trochanter shrinking variation at

the magnitude of about 4.3 mm. The second mode captures the additional thickening

pattern in the intertrochanteric valley with a magnitude of 1.2 mm. The third mode

reveals a bone material depositing pattern near the femur neck at a magnitude of

0.7mm.

(a) Head (b) Neck

(c) (d) (e)

Figure 5.21. Unhealthy group: first three modes on top of mean shape

Similar observations can be made for unhealthy group as well, where the sec-

ond mode captures a larger magnitude of 1.7mm for the femur head ball enlarging

variation, as compared to that of healthy group. It is worth noticing that in the third



151

mode of unhealthy group, the femur head ball portion closer to the femur neck is

demonstrating a clear thickening pattern that suggests the excessive bone material

phenomenon across all unhealthy proximal femurs. This is dissimilar to the third

mode from healthy group, where only the superior portion of the femur head sees

variation and the portion closer the the neck does not.

5.3.4 Healthy mean vs. unhealthy mean. Other than intra group statistical

(a) Superimposed, view 1 (b) Shell distance, view 1

(c) Superimposed, view 2 (d) Shell distance, view 2

Figure 5.22. UNHEALTHY mean on top of HEALTHY mean

analysis, it is also meaningful to conduct inter-group comparison. Figure 5.22 com-
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pares the mean shape of healthy and unhealthy group by superimposing them in two

anatomical views. Figure 5.22(a)(c) displays clearly the bone surface order, which

shows at the neck region, the unhealthy mean shape is truly having more material

grown, which causes the impingement and the pain reaction typically seen in the un-

healthy bones. Figure 5.22(b)(d) o↵ers a quantitative assessment of this comparison,

and a magnitude of 0.8mm discrepancy is observed mainly near the femur head ball

portion that is closer to femur neck. These inferences based on statistical models pro-

vide valuable insights, and it has also been confirmed the clinical conclusions drawn

by our collaborators in RUSH hospital.
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CHAPTER 6

CONCLUSION

6.1 Summary

This thesis introduces a novel reparameterization method for population-based

correspondence optimization for statistical shape modeling. Each shape instance

is represented as a di↵erentiable B-spline surface. The reparameterization of each

surface is also represented via B-splines. The di↵eomorphic reparameterization is

cast as constraints on the B-spline coe�cients. This resulting large-scale optimization

is then solved via a gradient based approach. To facilitate the convergence, full

analytical gradients of the cost function (i.e. description length) with respect to

manipulation parameters (i.e. B-spline coe�cients) have been derived. The adjoint

approach for computing the gradient has found to be especially e�cient. This B-spline

based direct di↵eomorphic reparameterization is found to be e↵ective on a set of both

synthetic and real data sets. It typically achieves more than one orders of magnitude

speed gain than concatenation of simple mapping based reparamaterization methods

such as Cauchy kernels and CPS warps for correspondence optimization.

In addition, we have presented methods for accurately and e�ciently comput-

ing continuous formulations of the covariance matrix where B-splines are used both

as a shape representation and as a form of reparameterization. We have shown, with

B-spline representation of the shapes, the formulation I is amenable to analytical com-

puting without sampling or discretization. Numerical approaches based on mid-point

and Gauss quadrature are developed for approximating both continuous formulations.

We have shown that the first formulation is parameterization-dependent, i.e. it may

lead to di↵erent covariance matrices with di↵erent parameterizations, and the second

formulation is parameterization-independent. We have demonstrated that the pro-

posed closed-form and numerical procedure for computing the covariance matrix are
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both accurate and e�cient in the sense that it would take many more discrete points

in the usual discrete form of the covariance matrix to converge to the same matrix.

We have also shown that, when data points are parameterized with the chord length

method in fitting B-spline curves, the resulting covariance matrix does not depend on

the point sampling scheme. With B-spline representations, both formulations have

been successfully applied in correspondence optimization for minimizing description

length of the statistical shape model. Our numerical results demonstrate, with suf-

ficient sampling, both formulations lead to similar shape correspondence. When the

sampling is not su�cient, the second formulation is more robust in alleviating poten-

tial collapse of landmarks.

In the medical application to human aortic models, we have built the Sta-

tistical Shape Model out of a training data set of six ascending aorta. The shape

instances are preprocessed and fitted in B-spline to perform as the actual input train-

ing set instances. The search for a reasonably high-quality SSM is reduced to an

correspondence optimization problem, and we propose a novel and e�cient scheme

for manipulating group-wise shape correspondence, i.e. the direct reparametrization

driven by B-spline coe�cients. Although our proposed correspondence optimization

algorithm currently concentrates on the shape of disk topology, the raw shapes are

carefully preprocessed and the interested areas such as the coronary sinuses are kept to

form a geometry with cylindrical topology. The generatrix is introduced to transform

cylindrical topology shapes to disk topology shapes as valid input into optimization

algorithm. Reliable statistical model evaluation measures of generalization ability,

specificity and compactness have been studied to show that correspondence is im-

proved and simultaneously an optimized SSM has been achieved. The SSM then

can be utilized for a good variety of downstream medical applications such patient-

specific modeling and diagnosis where alternatives are either expensive or potentially

hazardous.
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6.2 Contribution

The method presented in this thesis has the following contributions

• Direct reparametrization achieved by di↵eomorphic deformation through B-splines.

The conventional way of modeling reparametrization function is to concate-

nate a large number of simple deformation mappings. Due to its undesirable

optimization ine�ciency, we model the reparametrization function directly by

B-spline, and guarantee the di↵eomorphism deformation by enforcing bijective

constraints, which brings about sizable improvement in optimization e�ciency.

• Full di↵erentiability of objective function (description length) with respect to

reparametrization variables. Our method uses B-spline for both training set

shape representation and for reparametrization function modeling, this elimi-

nates the need to use numerical approximation for gradient computation with

other alternative geometric forms. Now every step in the statistical model-

ing pipeline becomes di↵erentiable and a full di↵erentiable objective function

gradient becomes possible.

• Adjoint method for analytical gradient computation. Under the proposed op-

timization setting, we derive the highly e�cient sensitivity formula by means

of adjoint method for the purpose of calculating the full analytical gradient.

The derived adjoint sensitivity enjoys superior e�ciency compared to numeri-

cal counterpart, especially as shape population size increases.

• Analytical form and e�cient numerical quadrature method for computing co-

variance matrix. As a critical step in statistical modeling and analysis, the

covariance matrix decomposition bears great influence on modes result, and

calculating covariance matrix is thus extremely important. Inspired by our pro-

posed use of B-spline forms of shape, we present useful analytical and numerical
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formulas for its computation, and comprehensively elaborate its properties and

influences in the context of statistical shape modeling.

• Viable application to real medical data for valuable clinical insight. Our pro-

posed algorithm has been accommodated to two real medical data sets, aorta

and proximal femur. The correspondence optimization results suggest notice-

able improvement in the quality of the statistical model, and the statistical

modes reveal consistent variational pattern as an surgeon or expert would iden-

tify.

6.3 Outlook

The proposed method is based on the assumption that boundaries of each

shape are already in correspondence, and the algorithm is currently designed for single

patch B-spline geometries. In the future, we would explore how to automatically

adjust boundary correspondence across shapes, and study how to extend our method

to objects of complex topology.

For the experiments on the aorta data, the small pool of six models limits the

statistical model’s ability to reliably characterize the underlying shape variation pat-

tern of the coronary sinus bump geometries; more aortic models will be collected and

incorporated into the training set, which will cover a much wider range of variational

pattern. Besides, the extension from simple topology to more complicated topology in

3D case will greatly enhance the method’s utility considering the delicate anatomical

attachments to aorta such as arteries and valve leaflets etc. Hopefully with these im-

provements, the SSM will serve as a guidance to understand and disclose the relations

among the arteries geometry and the pathological symptoms.

For the application to proximal femur, it’s first of all advisable to utilize more

femur models for a more faithful shape statistics characterization. More importantly,
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as the femur impingement involves both the femoral part and the acetabular part,

considering the acetabular shape along with the engaging proximal femur would be

more reasonable in the diagnosis of impingement.
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APPENDIX A

REPRAMETERIZATION OF CURVES BY CAUCHY KERNEL

CONCATENATION
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Following the formulation in [28], the Probability Density Function (PDF) ⇢(u)

is the sum of nl Cauchy kernel functions, and the integral of ⇢(u) constitutes a Cu-

mulative Distribution Function (CDF), which is just the reparameterizatin function.

RCauchy
S (u) = u0 =

Z u

0

⇢(u) du

⇢(u) =RCauchy
n
l

� · · · �RCauchy
2 �RCauchy

1 (u; cl, wl, al)

(A.1)

where cl, wl, al are the center, radius and magnitude of the l-th Cauchy kernel. Their

sequential superimposition results in the PDF function and leads finally to the repa-

rameterization function CDF. Since the PDF is always positive, the integral of their

summation is inherently monotonically increasing, and the di↵eomorphic condition is

automatically satisfied in this case.
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APPENDIX B

REPRAMETERIZATION OF SURFACES BY CLAMED PLATE SPLINE

CONCATENATION
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A reparameterization function can be represented as a composition of a series

of CPS warps; the l-th CPS warp is a localized function defined by CPS center cl,

radius wl and deformation al [28] as

RCPS
S (u) = u0 = RCPS

n
l

� · · · �RCPS
2 �RCPS

1 (u). (B.1)

RCPS
l (u) = RCPS

l (u; cl, wl, al)

=

8
>><

>>:

u+ al · h
✓
|u� cl|

wl

◆
if |u� cl| < wl,

u otherwise,

(B.2)

where

h(r) = 1� r2 + r2 ln(r2). (B.3)

The transformation is di↵eomorphic with the following constraint

|a| < 1

|h0(r)| = w
e

4
. (B.4)
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APPENDIX C

JACOBIAN OF A BÉZIER PATCH
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Suppose we have a Bézier surface patch S(u, v) defined by

S(u, v) =
pX

i=0

qX

j=0

Bi,p(u)Bj,q(v)Pi,j (C.1)

where p and q are the degree along u- and v-direction, Bi,p(u) and Bj,q(v) are the

Bernstein basis functions and Pi,j is the (i, j)-th control point.

Its Jacobian is then

J(u, v) = det


@S(u, v)

@u
,
@S(u, v)

@v

�
(C.2)

where

@S(u, v)

@u
=

p�1X

i=0

qX

j=0

Bi,p�1(u)Bj,q(v)p (Pi+1,j �Pi,j) ,

@S(u, v)

@v
=

pX

k=0

q�1X

l=0

Bk,p(u)Bl,q�1(v)p (Pk,l+1 �Pk,l)

(C.3)

Introducing the notation �Pij,u = Pi+1,j � Pi,j and �Pkl,v = Pk,l+1 � Pk,l

gives

J(u, v) =
p�1X

i=0

qX

j=0

pX

k=0

q�1X

l=0

Bi,p�1(u)Bj,q(v)Bk,p(u)Bl,q�1(v)

pq det [�Pij,u,�Pkl,v]

(C.4)

After considering the following property of Bernstein polynomial [59]

Bi,p(u)Bj,q(u) =

�
p
i

��
q
j

�
�
p+q
i+j

� Bi+j,p+q(u), (C.5)

(C.4) becomes
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p�1X

i=0

qX

j=0

pX

k=0

q�1X

l=0

�
p�1
i

��
p
k

�
�
2p�1
i+k

� Bi+k,2p�1(u)

�
q
j

��
q�1
l

�
�
2q�1
j+l

� Bj+l,2q�1(v) pq det [�Pij,u �Pkl,v]

=
2p�1X

s=0

2q�1X

t=0

Bs,2p�1(u)Bt,2q�1(v)Js,t

(C.6)
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where

Js,t =

X

i+k=s,
i2[0,p�1],
k2[0,p]

X

j+l=t,
j2[0,q],
l2[0,q�1]

�
p�1
i

��
p
k

�
�
2p�1
i+k

�
�
q
j

��
q�1
l

�
�
2q�1
j+l

� pq det [�Pij,u �Pkl,v] (C.7)



165

BIBLIOGRAPHY

[1] Timothy F Cootes, Christopher J Taylor, David H Cooper, Jim Graham, et al.
Active shape models-their training and application. Computer vision and image
understanding, 61(1):38–59, 1995.

[2] Tobias Heimann, Hans-Peter Meinzer, et al. Statistical shape models for 3d
medical image segmentation: A review. Medical image analysis, 13(4):543, 2009.

[3] Timothy F. Cootes, Gareth J. Edwards, and Christopher J. Taylor. Active ap-
pearance models. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 23(6):681–685, 2001.

[4] Nils Hasler, Carsten Stoll, Martin Sunkel, Bodo Rosenhahn, and H-P Seidel. A
statistical model of human pose and body shape. In Computer Graphics Forum,
volume 28, pages 337–346. Wiley Online Library, 2009.

[5] Paul P Smyth, Christopher J Taylor, and Judith E Adams. Automatic measure-
ment of vertebral shape using active shape models. Image and Vision Computing,
15(8):575–581, 1997.

[6] Kai-kai Shen, Jurgen Fripp, Fabrice Mériaudeau, Gaël Chételat, Olivier Salvado,
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