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Abstract

In this paper, we propose an efficient optimization approach for obtaining shape correspon-
dence across a group of objects for statistical shape modeling. With each shape represented in
a B-spline based parametric form, the correspondence across the shape population is cast as
an issue of seeking a reparametrization for each shape so that a quality measure of the result-
ing shape correspondence across the group is optimized. The quality measure is the description
length of the covariance matrix of the shape population, with landmarks sampled on each shape.
The movement of landmarks on each B-spline shape is controlled by the reparameterization of
the B-spline shape. The reparameterization itself is also represented with B-splines and B-spline
coefficients are used as optimization parameters. We have developed formulations for ensuring
the bijectivity of the reparameterization. A gradient-based optimization approach is developed,
including techniques such as constraint aggregation and adjoint senstivity for efficient, direct
diffeomorphic reparameterization of landmarks to improve the group-wise shape correspondence.
Numerical experiments on both synthetic and real 2D and 3D data sets demonstrate the effi-
ciency and effectiveness of the proposed approach.

Keywords Statistical Shape Model, Shape Correspondence, Direct Reparameterization , Adjoint
Method

1 Introduction

A statistical shape model (SSM) provides a compact characterization of the shape variability in a
set of shapes. It was initially used as a tool for facilitating automatic image segmentation [1, 2].

∗Email addresses: kli@hawk.iit.edu (K. Li) and qian@engr.wisc.edu (X. Qian: corresponding author).
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It has since seen many other applications including facial recognition [3], computer animation [4],
medical diagnosis [5, 6], patient-specific modeling [7–10] and human body modeling [11], to name
but a few. Finding correspondence across all shape instances is a fundamental task in building
SSM. Manual identification of landmarks is effective under some circumstances but in general is
not a reliable strategy since it tends to be subjective, time-consuming, error prone, and difficult to
be applied in large scale data sets [12]. Consequently, methods for automatically identifying the
shape correspondence have been a major research focus in the field.

The automatic identification of the shape correspondence across a set of objects can be achieved
by manipulating correspondence either in the object space or in the parameter space. Thus far,
one of the most common approaches to achieving shape correspondence is through deforming in the
object space a template shape to each shape instance in the training set, and the found pairwise
correspondences are then propagated through the common template reference to form the group-
wise correspondence. Group-wise registration has also been developed [13]. In such a deformation
based correspondence manipulation approach, the deformed landmarks may not actually lie on
the object shape before the optimization convergence is achieved. Further, the deformation usually
reduces to a problem where a “similarity” measure between the template and each shape instance is
minimized and some regularization constraints are satisfied. Typically such a measure is related to
geometric descriptors such as spatial distance and shape feature, and the optimization is essentially
a rigid or non-rigid registration problem [14–17]. However, these geometric descriptors and the
regularization constraints are not necessarily a good basis for correspondence.

An alternative is to manipulate the correspondence through reparameterizing the shapes in the
parameter space. For example, in [18], objects of spherical topology are mapped to a sphere and
correspondence is manipulated through concatenations of symmetric theta transformations on the
spherical map. Reparameterization of shapes in the parameter space thus allows convenient manip-
ulation of correspondence of surface points by simply changing point parameters. Reparameterized
points always lie on the object shape during the optimization process. As such, the reparameter-
ization lends itself to a more principled approach for establishing correspondence: optimizing the
quality of the resulting statistical models. During the past few years, SSM quality measures have
evolved from the model covariance trace [19], to the model covariance determinant [20], and finally
to the Description Length(DL) [18,21,22] and its simplification [23] or variants [24]. This informa-
tion theoretic objective function of description length has shown to be an effective measure [21] for
the population-based correspondence optimization.

Although the population-based approach to shape correspondence does not require the pre-
selection of a template and tends to provide a more faithful characterization of the variability
pattern, this approach is still far from being widely used to build SSMs due to its low efficiency
in identifying optimal correspondence across the shape population. In the minimum description
length based group-wise correspondence optimization approach originated in [21], the group-wise
shape correspondence search consists of successive small-scale optimizations, each of which uses
only a few optimization variables to relocate landmarks in a local region of each shape instance.
In each optimization, only landmarks in local regions are moved. This necessitates a huge number
of successive optimizations to manipulate all the landmarks, thus leading to inefficiency. Some
researchers use analytical gradient formula whenever possible to speed up the gradient evaluation
[25, 26]. However, in these implementations, the landmark positions in the training set shapes
are non-differentiable with respect to optimization variables, the gradients are thus only partially
analytical. In [27], spline representation of 2D shapes is proposed so a full analytical gradient of
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reparameterization can be derived.
In our proposed approach, we cast shape correspondence as an issue of seeking optimal repa-

rameterization D(u) of the parametric field u of each shape so that a quality measure f of the
resulting shape correspondence across a group of objects is optimized. The reparameterization
is applied to the parametric domain of parameterized curves or surfaces. Our SSM is based on
the point-distribution model [28]. In our approach, each landmark point S(u) in a given shape is
changed to S (D(u)) in order to improve correspondence via the reparameterization D(u). Our
approach thus requires the parameterization of each shape, that is, every point x of the shape in
the physical space is mapped to a point u in the parametric domain. In our implementation, we
choose the B-spline representation S(u) of each shape instance, which can be reconstructed from
triangular mesh representation of 3D objects. The parametric domain then undergoes a reparame-
terization represented via another tensor-product B-spline D(u) with B-spline coefficients b as the
optimization parameters. We choose the description length as the objective function of the shape
correspondence.

Figure 1 illustrates the proposed idea. A group of hand contours are shown in Figure 1(a).
Each shape is represented with B-splines, and Figure 1(b) shows such a B-spline representation
for one shape with control points and knots. Initially landmarks are uniformly sampled over the
parameter domain of the B-spline shape S(u) as shown in Figure 1(c). To change the landmark
positions, reparameterization D(u) is applied to the parameter domain of each B-spline shape. This
reparameterization is also represented with B-splines as shown in in Figure 1(d) where each red
point represents a B-spline coefficient for the reparameterization. The landmarks are redistributed
as shown in Figure 1(e) after the reparametrization. The landmark redistribution can be seen from
the four highlighted landmarks, where a, b, c, d moved to A,B,C,D respectively over the other side
of the finger tips.

The salient feature of this approach is as follows

• Diffeomorphic deformation through B-splines. Existing technique [18] for reparametrization
concatenates a series of simple homeomorphic mappings. One optimization run with this
reparametrization technique leads to the deformation of a local parametric region and it can-
not provide any information on the search direction for subsequent local deformations in other
regions. Therefore it requires the concatenation of a large number of simple mappings and
causes severe inefficiency (See Section 5.1). Instead of concatenation of many local mappings,
we propose the use of single B-spline function to directly represent the diffeomorphic repa-
rameterization D(u) for the parameterization u of each shape instance S(u). The injectivity
for the reparameterization is guaranteed by enforcing the Jacobian positivity constraint.

• Full differentiability of the objective function f (i.e. description length) with respect to repa-
rameterization variables b. The objective function f (i.e. description length) is a function
of landmark positions. The landmark positions in each shape are differentiable with respect
to reparameterization parameters b due to the parametric representation S(u) of each shape
and diffeomorphic reparameterization D(u). This ensures that the description length is fully
differentiable with respect to the reparameterization variables b.

The direct diffeomorphic reparameterization based formulation for SSM leads to an optimization
problem with a large number of constraints (for enforcing the injectivity of reparametrization) and
a large number of optimization variables (i.e. B-spline coefficients for reparameterization). Due
to the full differentiability of the objective function f (i.e. description length) with respect to
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Figure 1: Landmark manipulation by reparameterization for improving shape correspondence in
statistical shape modeling.
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reparameterization variables b, a gradient-based optimization approach can be developed to ensure
fast convergence. More specifically, the following optimization techniques are developed.

• Constraint aggregation. The B-spline based diffeomorphic reparameterization leads to a large
number of constraints on Jacobians for ensuring the mapping is bijective. In order to facilitate
fast convergence in gradient-based optimization, a constraint aggregation technique is used
where the large number of constraints are aggregated into one or a few constraints.

• Adjoint method for computing sensitivity. The adjoint approach is used to compute the sen-
sitivity of the objective function with respect to reparameterization parameters b, which is
more efficient than direct differentiation of the objective function f . In computing the sensi-
tivity of the description length w.r.t. optimization variables b, eigen values of the covariance
matrix and their derivatives are needed. Since each eigen analysis is expensive, the adjoint
method is thus especially efficient for computing the sensitivity in this kind of optimization
problems that have larger number of optimization variables and fewer functions (after con-
straint aggregation). In this adjoint method, the derivatives of a function w.r.t. a large
number of optimization variables only involves one eigen analysis of the covariance matrix.
On the other hand, in the direct differentiation method, the number of eigen analysis is the
same as the number of optimization variables.

The remainder of this paper is organized as follows. Section 2 reviews the basic computing
procedures in statistical shape modeling and the role of diffeomorphic reparameterization in SSM.
Section 3 details our proposed approach on direct diffeomorphic reparameterization for shape cor-
respondence. Section 4 presents the developed optimization techniques with experimental results
in Section 5. This paper is concluded in Section 6.

2 Background on statistical shape modeling

In this section, we review the basic computing procedures in statistical shape modeling and the
role of diffeomorphic reparameterization in SSM.

Statistical Shape Model was initially called Point Distrubition Model (PDM) [28], and it requires
each shape instance in the training set be represented by a set of points, known as the landmarks
[19]. Regardless of the geometric form of the training set, landmarks are constrained to be on the
boundary of a shape instance, and they form a point-based representation that approximates the
original shape [29]. The statistical modeling framework requires that the same number of landmarks
sampled on all shapes across the training set.

Suppose a training set {Ti} (i = 1, 2, · · · , nS) comprises nS shape instances and each is repre-

sented by nP landmarks. The j-th landmark of the i-th instance is x
(j)
i = [x(j), y(j), z(j)]Ti ∈ R3. Ow-

ing to the correspondence assumption of landmarks, all the nS landmarks {x(j)
i } (i = 1, 2, · · · , nS)

with label j should correspond across all instances. The landmark representation of each instance is
usually written into a concatenation of nP landmarks ordered by labels as a shape vector expression:

xi
.
= [x

(1)
i , y

(1)
i , z

(1)
i , x

(2)
i , y

(2)
i , z

(2)
i , · · · , x(nP )i , y

(nP )
i , z

(nP )
i ]T .

All the nS shape vectors {xi} could be concatenated into a 3nP × nS shape vector matrix:

XS .
= [x1,x2, · · · ,xnS ]. (1)
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In order to align a group of shapes stored in XS , the Generalized Procrustes Analysis (GPA) [30]
operation is conducted, denoted by an alignment operator as below

XA = A(XS). (2)

More specifically, the GPA of group-wise alignment is done by iteratively performing the pair-wise
Procrustes Analysis (PA) between each shape and the mean. The PA brings a shape vector x to a
fixed shape vector y by similarity transformation

min
t,s,R

||y − sR (x− t)||2 .
=

nP∑
j=1

∣∣∣∣∣∣y(j) − sR
(
x(j) − t

)∣∣∣∣∣∣2
where shape irrelevant factors including translation t, scaling s and rotation R are removed. For
more details in the iterative procedure, refer to Algorithm 2.1 in [31].

If the training shapes are continuous and the i-th shape is parameterized by the mapping Si(u),
the continuous representation of the covariance matrix expressed in the (µ, ν)-th entry is

Eµν =
1

(nS − 1)A

∫ [
Sµ(u)− S̄(u)

]
·
[
Sν(u)− S̄(u)

]
dA(u), (3)

where S(·) is the vector-valued function that defines the continuous representation of the i-th shape
by mapping the parameter space to the physical space. S̄(u) is the mean shape defined as follows

S̄(u)
.
=

1

nS

nS∑
i=1

Si(u).

A is the surface area of the mean shape. For numerical implementation, the continuous covariance
matrix is obtained via discretization through a set of discrete landmarks as

Eµν =
1

(nS − 1)nP

nS∑
i=1

(xi − x̄)µ(xi − x̄)ν . (4)

where on each shape the i-th landmark xi could be obtained as sampling at the i-th parameter
point ui: i.e. xi = S(ui)

This could be written simply in a matrix form [21]

E =
1

(nS − 1)nP
XT
c Xc, (5)

where Xc is defined by
Xc

.
= [xA1 − x̄,xA2 − x̄, · · · ,xAnS − x̄], (6)

and xAi is the i-th shape vector after alignment operation A, i.e. the component of XA in (2); the
mean shape vector of SSM is

x̄ =
1

nS

nS∑
i=1

xAi . (7)

The Principal Component Analysis (PCA) [32] is then conducted to extract the principal modes
of shape variability via the eigenvalue decomposition of the covariance matrix

Evm = λmvm (m = 1, 2, · · · , nS − 1), (8)
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where vm is the m-th eigenvector and λm the corresponding eigenvalue.
The mean shape x̄, modes {vm} and variances {λm} constitutes the statistical shape model.

This statistical model is a much more compact representation of the shape variability pattern of
the implied shape class than the original training set. What’s more, it makes possible to represent
any valid instance x belonging to the shape class by a linear approximation using only the first m̃
(m̃ ≤ nS − 1) modes

x ≈ x̄ +

m̃∑
m=1

βmvm, (9)

where the m-th mode parameter is found by projection

βm = (x− x̄)Tvm. (10)

The quality of the linear approximation has a great influence on the utility of the statistical model
in subsequent applications, and it is evidently decided by the quality of the SSM, which is directly
tied to the quality of the groupwise correspondence.

The PCA step defined by (5) and (8) is compactly written as

λ = C(XA). (11)

The objective function of Description Length was originally derived by Davies in [21] and elaborated
in [29]. A simplified version presented in [23] defined as below is used in our correspondence
optimization:

f
.
=

nS−1∑
m=1

Lm, (12)

where each mode’s contribution is

Lm =

{
1 + log(λm/λcut) λm ≥ λcut,
λm/λcut otherwise.

The threshold λcut is determined by landmark resolution and shape scale

λcut =
2 lmin

rmax
, (13)

where lmin is the smallest edge length in the landmark-based representation and rmax is the radius
of largest circumscribing sphere over training set shapes.

3 Direct diffeomorphic reparameterization for correspondence op-
timization

In this section, we present how B-splines can be used for representing reparameterization of para-
metric curves and surfaces and be used for manipulating shape correspondence. We show how
such single direct reparameterization function differs from concatenations of multitude of simple
mappings into one reparameterization function. We then show constraints for ensuring the B-spline
based reparameterization is diffeomorphic.

7



Since our correspondence manipulation is based on reparameterization of parametric curves and
surfaces, the training shapes must be in the form of parametric curves or surfaces. In this paper,
we choose to use B-splines to represent the shapes.

A B-spline curve of degree d is defined by

S(u) =
n∑
k=0

Bk,dPk 0 ≤ u ≤ 1;

where Bk,d is the B-spline basis function [33] of degree d associated with the k-th control points
Pk recursively defined on a non-decreasing knot vector Ξ = {ξ̄0, ξ̄1, · · · , ξ̄n+d+1} as

Bk,d(u) =
(u− ξ̄k)Bk,d−1(u)

ξ̄k+d − ξ̄k
+

(ξ̄k+d+1 − u)Bk+1,d−1(u)

ξ̄k+d+1 − ξ̄k+1
,

Bk,0(u) =

{
1 ξ̄k ≤ u ≤ ξ̄k+1,

0 otherwise.

(14)

A B-spline surface of degree d and e is defined by

S(u, v) =

nu∑
k=0

nv∑
l=0

Bk,dBl,ePk,l 0 ≤ u ≤ 1, 0 ≤ v ≤ 1;

where Bk,d and Bl,e following the basis definition in (14) is associated with the (k, l)-th control
point Pk,l, and the knot vectors along the two parametric directions are Ξ = {ξ̄0, ξ̄1, · · · , ξ̄nu+d+1}
and H = {η̄0, η̄1, · · · , η̄nv+e+1}.

3.1 B-spline based direct reparameterization

We show below how B-splines can also be used for representing the reparameterization of parametric
curves and surfaces.

3.1.1 Reparameterization of parametric curves

Fig. 2 shows the reparameterization of a 2D curve where points sampled on u have been moved
to D(u). Such a reparameterization function D(u) can be represented with the cancatenation of
simple mappings. For example, the reparameterization function D(u) shown in Fig. 2 is represented
in Fig. 3(a) with 4 Cauchy kernels (centered at c1, c2, c3, c4) which are sequentially superimposed
and integrated into D(u) as proposed by [29]; See Appendix I for details regarding Cauchy kernel
and its concatenation. .

In this paper, we propose to directly represent D(u) as a single B-spline function as shown in
Fig. 3(b) where empty circles represent B-spline coefficients {bi}. The reparameterization function
D(u) for a parametric curve can be represented by a B-spline with nb coefficients

D(u) =

nb−1∑
i=0

Bi,p(u)bi, 0 ≤ u ≤ 1; (15)

where Bi,p is the B-spline basis function [33] of degree p associated with the i-th B-spline coefficient
bi, and it is recursively defined on a non-decreasing knot vector U = {ū0, ū1, · · · , ūn+p+1}.
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We assume that the starting and ending points of all curves are already in correspondence.
With this assumption, the boundary of the parameter domain (two ends at u = 0, 1) is fixed even
with the reparameterization function. Therefore, we use a clamped knot vector (i.e. repeating the
first (p + 1) and last (p + 1) knots) and b0 = 0, bn = 1 for representing the reparameterization so
that D(0) = 0 and D(1) = 1.

3.1.2 Reparameterization of parametric surfaces

A reparameterization of a 3D surface is illustrated in Fig. 4, where cubes and spheres respectively
represent two sampled points before and after the reparameterization. Since a 3D surface S(u) =
[x(u), y(u), z(u)] is mapped to a 2D parametric domain, i.e. u = (u, v), the reparameterization
D(u) for 3D surfaces S(u) have two components in u and v directions D(u) = [Du(u, v), Dv(u, v)].
This reparameterization function could also be visualized by a vector field in Fig. 4(c), and its
parametric grid is shown Fig. 4(d).

Such a reparameterization field can be represented by the concatenation of simple mappings.
For example, two Clamped Plate Spline (CPS) warps [29] are applied sequentially in the parameter
domain shown in Fig. 5(a) and (b) . These two CPS warps are with centers c1 and c2 and red
dotted circles as the CPS range. See Appendix II for details on CPS warps.

Instead of using concatenation of simple mappings, we propose the use of single B-spline func-
tions to directly represent the reparameterization of u and v component of the parametric domain,
as shown in Fig. 5(c) where 8 × 8 B-spline coefficients bi (red circles) are used to represent the
reparameterization field D(u). In general, the reparameterization D(u) = [Du(u, v), Dv(u, v)] in
the square planar parameter domain is defined as

Du(u, v) =

nb1−1∑
i=0

nb2−1∑
j=0

Bi,p(u)Bj,q(v)bui,j ,

Dv(u, v) =

nb1−1∑
i=0

nb2−1∑
j=0

Bi,p(u)Bj,q(v)bvi,j ,

0 ≤ u, v ≤ 1;

(16)

where Bi,p and Bj,q are the B-spline basis functions (14) of degree p and q associated with the
(i, j)-th B-spline coefficient 2-tuple bi,j = (bui,j , b

v
i,j); the coefficient number along the u- and v-

direction are nb1 and nb2 respectively. They are respectively defined on two sets of non-decreasing
knot vector U1 and U2.

The four boundaries of all the shapes are assumed to be in correspondence already. With this
assumption, the four boundaries of the square parametric domain are fixed during reparameteriza-
tion, i.e.

Du(0, v) = 0, Du(1, v) = 1,
Dv(u, 0) = 0, Dv(u, 1) = 1.

(17)

Therefore, the two knot vectors are chosen to be of clamped type and the B-spline coefficients
at the four boundaries are either 0 and 1.
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3.2 Diffeomorphism of reparameterization

3.2.1 Curve case

Setting dD(u)/du > 0 in (15) gives the bijectivity constraint for diffeomorphic reparameterization
of curves for correspondence manipulation. Since D(u) is a degree-p B-spline function, its derivative
is a degree-(p − 1) B-spline function with bi+1 − bi as B-spline coefficients [34], we thus have the
following explicit constraint for ensuring diffeomorphic reparameterization of curves

bi − bi+1 < 0, i = 0, 1, · · · , nb − 2. (18)

3.2.2 Surface case

The bijectivity of reparameterization can be guaranteed by the positivity of Jacobian throughout
the parameter domain, i.e.

J(D(u)) =

∣∣∣∣∣
∂Du(u,v)

∂u
∂Du(u,v)

∂v

∂Dv(u,v)
∂u

∂Dv(u,v)
∂v

∣∣∣∣∣ > 0, ∀(u, v) ∈ [0, 1]. (19)

Assuming there are nb1 × nb2 B-spline coefficient tuples bi,j for representing the reparameteri-
zation in (16). Due to the boundary constraint (17), there are only (nb1 − 2) × (nb2 − 2) interior
coefficients bi,j that can be used to manipulate correspondence for each shape. Consequently, there
are 2×(nS−1)×(nb1−2)×(nb2−2) optimization variables for nS shapes. To ensure the reparame-
terization D(u) is diffeomorphic, the bijectivity condition (19) that prevents the self-intersection of
the parametric field can be cast as constraints on the reparameterization parameters, i.e. interior
B-spline coefficient tuples bi,j .

Diffeomorphism via constraints in the B-spline form of Jacobian We give below a suf-
ficient condition for ensuring the Jacobian field J(u) (19) is positive so that the reparameteriza-
tion D(u) is diffeomorphic. The scalar Jacobian field J(u) defined in (19) for the B-spline based
reparameterization (16) consists of derivatives of B-splines (piecewise polynomials) and thus re-
mains piecewise polynomials. Therefore, J(u) itself can be cast in the B-spline form as described
in [35] [36]. More specifically, the Jacobian J(u) can be expressed as

J(u, v) = det

[
∂D(u, v)

∂u

∂D(u, v)

∂u

]
,

∂D(u, v)

∂u
=

nb1−2∑
i=0

nb2−1∑
j=0

Bi,p−1(u)Bj,q(v)γi (bi+1,j − bi,j) ,

∂D(u, v)

∂v
=

nb1−1∑
k=0

nb2−2∑
l=0

Bk,p(u)Bl,q−1(v)ηl (bk,l+1 − bk,l) ,

(20)

where: γi =
p

ūp+i+1 − ūi+1
; ηl =

q

vq+l+1 − vl+1
. Using the notation ∆bui,j = (bi+1,j − bi,j) and

∆bvk,l = (bk,l+1 − bk,l) and noticing that the product of two B-splines is a higher-degree B-spline
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[37], the Jacobian could be written as the following B-spline form

J(u) = J(u, v) =

nb1−2∑
i=0

nb1−1∑
j=0

nb1−1∑
k=0

nb2−2∑
l=0

Bi,p−1(u)Bj,q(v)

Bk,p(u)Bl,q−1(v)γsηl det
[
∆bui,j ∆bvk,l

]
=

2nb1−3∑
s=0

2nb2−3∑
t=0

Bs,2p−1(u)Bt,2q−1(v)JBSPs,t ({b}),

(21)

where JBSPs,t is the B-spline coefficient of the B-spline form of the Jacobian J(u) for the reparame-

terization D(u) in (16); each JBSPs,t is a function of {b}. The above B-spline form of Jacobian leads
to the following sufficient condition for ensuring the reparameterization D(u) is diffeomorphic. Due
to the non-negativeness of B-spline basis functions, J(u) > 0 when every B-spline coefficient in (21)
is positive, i.e.

JBSPs,t ({b}) > 0,

s = 0, 1, · · · , nJ1 − 1; t = 0, 1, · · · , nJ2 − 1,
(22)

where nJ1 = 2nb1−2 and nJ2 = 2nb2−2 are the number of B-spline coefficients of the B-spline form
of Jacobian along the u- and v-direction; thus there are total nJ = nJ1nJ2 = 4(nb1 − 1)(nb2 − 1)
positivity constraints.

The above condition is a sufficient, but not necessary condition. In order to make the condition
less conservative, one can extract Bézier patches out of the B-spline representation and obtain more
tighter bound of the Jacobian based on Bézier coefficients, as suggested in [35] and [36]. Such Bézier
extraction involves the following intermediate steps:

1. Decompose B-spline of control coefficients {b} into Bézier patches (each patch with control
coeffcients {b̃}) by knot insertion algorithms elaborated in [34].

2. Find the Bézier representation of the Jacobian of the Bézier patches as directed in [38].

3. Repose the Jacobian representation of Bézier patches to form the Jacobian B-spline of C0

inter-patch continuity with control coefficients {JBEZs,t }

For each reparameterization D(u) represented by degree p× q B-splines with nb1 × nb2 coefficient
tuples bi,j , there are (nb1 − p) × (nb2 − q) Bézier patches with control coeffcients {b̃} after de-
composition, and there will be (nb1 − p)(2p − 1) + 1 and (nb2 − q)(2q − 1) + 1 Jacobian B-spline
coefficients along each parametric direction. Therefore, the bijectivity can be ensured by enforcing
the following constraints for each shape instance as

JAs,t = JBEZs,t ({b̃}) > 0

s = 1, · · · , nJ1; t = 1, · · · , nJ2
(23)

where nJ1 = (nb1 − p)(2p − 1) + 1 and nJ2 = (nb2 − q)(2q − 1) + 1 are the number of Bézier
coefficients of the Bézier form of Jacobian along the u- and v-direction; thus there are totally
nJ = nJ1nJ2 = [(nb1 − p)(2p− 1) + 1][(nb2 − q)(2q − 1) + 1] positivity constraints.
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Jacobian constraints on landmarks A simple alternative to the above rigorous diffeomorphic
conditions is to enforce Jacobian positivity at a finite set of parameter points that correspond
to landmarks. The evaluated Jacobian values are all functions of the B-spline coefficients {b}
computed by (20). The parameter points chosen are usually those associated with the parametric
locations of the landmarks. Suppose there are nJ1 = nP1 and nJ2 = nP2 landmarks along the
u- and v-direction respectively, and the (s, t)-th parameter point in us,t. The constraints can be
formulated as

JBs,t = J(us,t, {b}) = det
[
∂D(us,t)

∂u
∂D(us,t)

∂u

]
> 0

s = 1, · · · , nJ1; t = 1, · · · , nJ2,
(24)

where nJ1 and nJ2 are the number of sampled Jacobians along the u- and v-direction, in this case
equalling the landmark number along each direction; thus there are totally nJ = nJ1nJ2 = nP1nP2

positivity constraints. Although the Jacobian between two landmarks with positive Jacobians is
not necessarily positive in theory, we find that in all examples reported in this paper Jacobians are
all positive in between with the sufficient landmark resolution chosen. This alternative gives better
efficiency than enforcing the constraints in the B-spline form of Jacobian, as shown in Section 5.

It should be noted that the proposed B-spline based reparameterization is based on Free
Form Deformation(FFD) [39]. FFD based techniques have been used extensively, for example,
in matching CT/MRI images (image registration) in a multitude of medical imaging applica-
tions [40] [41] [42] [43]. The differences in our approach are the following: it is the parametric
domain, rather than physical surfaces, that is deformed; our formulation for enforcing diffeomor-
phic is different; our approach for enforcing the constraints via aggregation shown in next section is
also different. It should be noted that splines have been used in landmark matching, e.g. in [44] [45]
where the deformation is driven by energy minimizing cost function with various kernels and the
diffeomorphism is guaranteed by the flow solutions to ODE. It should also be noted that diffeomor-
phisms illustrated in for example Fig 2b are akin to fingerprints observed in [46]. There are also
alternative for diffeomorphic reparameterization for curves as reported in [47] [48] [49].

4 Optimization techniques

4.1 Optimization formulation

With the above B-spline representation of reparameterization functions D(u) and the diffeomorphic
conditions, we thus have the following optimization formulation for using B-spline based reparam-
eterization for manipulating shape correspondence:

min
b

f(b) =
∑

λi≥λcut

[
1 + log

λk(b)

λcut

]
+

∑
λk<λcut

λk(b)

λcut
(25a)

s.t.
[
CT (b)C(b)

]
vk(b) = λi(b)vk(b) (25b)

vTk (b)vk(b) = 1, k = 1, · · · , nS (25c)

gl(b) < 0, l = 1, · · · , nG (25d)

In this formulation, b is the set of optimization variables and represents the collection of interior
B-spline coefficient tuples b for ns − 1 shapes, where one shape from the training set is selected as
a reference. The objective function f(b) is the simplified description length, which is a function of
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eigenvalues computed from (25b) and (25c). The matrix C is related to the covariance matrix E
by E = CTC with

C =
Xc√

(nS − 1)nP
.

The constraint (25d) represents the diffeomorphic conditions, i.e. (18) for curves and (23) (24) for
surfaces, each of which is a function of optimization variables b .

The optimization formulation given in (25) leads to a large-scale optimization problem. For SSM
of 3D surfaces, there are 2 × (nS − 1) × (nb1 − 2) × (nb2 − 2) B-spline coefficients as optimization
variables with nG constraints based on (23) (24), which will be detained in Section 4.3.1.

In order to efficiently obtain optimized shape correspondence, we have developed a gradient-
based optimization approach. We have derived analytical gradient of the cost function (25a) with
respect to optimization variables b with both direct differentiation and the adjoint sensitivity
method. We have also developed a technique to approximate the constraints and to aggregate the
large number of Jacobian constraints into one constraint in order to speed up the convergence.

Analytical gradient provides an efficient and accurate mean to obtain gradient for optimization.
It is especially important in large-scale optimization problems where the finite difference based
approach for computing gradient would be inefficient. It turns out the analytical gradient can
be derived for all the differentiable intermediate steps since all steps in our formulation, including
reparameterization, sampling, alignment, PCA and DL computation are differentiable, the gradient
product gives the analytical objective gradient due to the chain rule as following

df

dbr
=
∑
i

∂f

∂λi

∑
j

∂λi

∂xAj

∑
k

∂xAj

∂xSk

∑
l

∂xSk
∂D(ul)

∑
r

∂D(ul)

∂br
(26)

where D(ul) is the l-th reparameterized landmark point in the parameter domain, xSk is the k-th

landmark in the physical domain and xAj is the j-th aligned landmark. Among them the
∂f

∂λi
,
∂λi

∂xAj

and
∂xAj

∂xSk
are inherently differentiable, and

∂D(ul)

∂br
is also differentiable as long as a differentiable

reparameterization technique such as (15) and (16) is used. The analytical gradient
∂xSk

∂D(ul)
requires

the differentiability of the geometric representation of training set shapes. In this paper, we use
the quadratic B-spline of C1 smoothness to represent the shapes in the training set. Therefore, full
analytical gradients can be derived.

4.2 Analytical gradient of objective function

The total sensitivity from (25a) is just

d f(b)

d br
=
∑
i

∂f [b,λ(b)]

∂λi

∂λi(b)

∂br
(27)

where r = 1, · · · , nD; the optimization variable number nD = (nb − 2)(nS − 1) for curves and
nD = 2(nb1 − 2)(nb2 − 2)(nS − 1) for surfaces.

Under the state equation formulation in (25), we can obtain the objective sensitivity in (27)
with either the direct method or the adjoint method, giving rise to the direct sensitivity and adjoint
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sensitivity. The adjoint sensitivity is significantly faster than the direct sensitivity. We provide the
derivations for both to highlight the characteristics of the adjoint method.

4.2.1 Direct sensitivity

The direct sensitivity computes the gradient of the cost function by directly differentiating the cost
function (25a). That is,

∂ f(b)

∂ br
=

nS∑
m=1

∂f

∂λm

∂λm
∂br

. (28)

The term ∂λm/∂br (m = 1, · · · , nS) is obtained by differentiating equations (25b) and (25c) with
respect br, which leads to the following resulting linear system[

0 vTm
vm λmInS −CTC

][∂λm
∂br

∂vm
∂br

]
=

[
0

∂(CTC)
∂br

vm

]
. (29)

The linear equation system can be solved to obtain ∂λm/∂br and ∂vm/∂br. Plugging ∂λm/∂br into
(28) yields the desired gradient.

4.2.2 Adjoint sensitivity

In order to avoid the direct computation of ∂λm/∂br and ∂vm/∂br, we introduce a Lagrangian
quantity by augmenting the objective function (25a) with 2nS sets of constraints (25b) and (25c)
as

L = f(λ) +

nS∑
m=1

µTm
(
CTC vm − λmvm

)
+

nS∑
m=1

νm(vTmvm − 1) (30)

where adjoint variables µm and νm (m = 1, · · · , nS) are the Lagrange multipliers.
Differentiation of (30) w.r.t br gives

∂ f

∂ br
=
∂ L
∂ br

=

nS∑
m=1

∂f

∂λm

∂λm
∂br

+

nS∑
m=1

µTm

(
∂(CTC)

∂br
− ∂λm

∂br
InS

)

+

nS∑
m=1

µTm
(
CTC − λmInS

) ∂vm
∂br

+

nS∑
m=1

2νmvTm
∂vm
∂br

,

which could be simplified to

∂ f

∂ br
=

nS∑
m=1

µTm
∂(CTC)

∂br
vm +

nS∑
m=1

(
∂f

∂λm
− µTmvm

)
∂λm
∂br

+

nS∑
m=1

[
µTm(CTC− λmInS ) + 2νmvTm

] ∂vm
∂br

.

(31)

The key idea of the adjoint method is to circumvent the direct computation of the sensitivity of
the state variables λ with respect to optimization variables b. A more general discussion on the
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adjoint method is available in [50] [51] [52]. Specifically in this situation, in order to bypass the

direct calculation of
∂λm
∂br

and
∂vm
∂br

in (31), their coefficients in (31) are set to zero. This is possible

since the arbitrariness of adjoint variables µm and νm. This therefore leads to the linear adjoint
equations below for sovling these adjoint variables

∂f

∂λm
− µTmvm = 0,

µTm(CTC− λmInS ) + 2νmvTm = 0.

(32)

The above equation can be rearranged into the following linear system[
vTm 0

CTC− λmInS 2vm

] [
µm
νm

]
=

[
∂f
∂λm

0

]
(33)

from which the adjoint variables µm and νm can be solved. The sensitivity in (31) can then be
obtained through the following simplified expression

∂ f

∂ br
=

nS∑
m=1

µTm
∂(CTC)

∂br
vm. (34)

It is worth noting that, with the direct method, the linear system (29) is solved for each
optimization variable br, r = 1 to nD, and every eigenvalue λm. On the other hand, with the
adjoint method, the linear system (33) is solved just once for every eigenvalue λm. Numerical
examples in Section 5.2 are presented to demonstrate the accuracy and efficiency of the adjoint
sensitivity.

4.3 Inequality constraints for optimization

4.3.1 Constraints aggregation

Based on the description in Section 3.2.2, we consider the two options: a) Jacobian B-spline (via
Bézier implementaion) (23); and b) sampled Jacobian (24). In either situation, the large quantity
of original nJ constraints is rather undesirable for the optimization with already many optimization
variables. For the purpose of reducing the number of constraints while not sacrificing the differ-
entiability of constraint functions, the constraint aggregation [53] [54] technique is employed here.
The Kreisselmeier-Steinhauser (KS) function [55] is used here and we choose to aggregate all the
nJ Jacaobian constraintsfor each shape into one single constraint to be applied as the optimization
constraints in (25d), yielding totally nG = nS − 1 constraints for nS − 1 shapes as

gl(b) =
1

K
ln

[
nJ∑
z=1

e−KJz({b}l)

]
< 0, l ∈ 1, .., nS ; l 6= iR (35)

where Jz is original Jacobian positivity, being either JAs,t in (23) for the Jacobian B-spline

constraint or JBs,t in (24) for the direct sampled Jacobian constraint; the linearly ordered index is
obtained by z = s + (t − 1)nJ1. iR is the reference shape index whose parameter domain is not
reparameterized and landmarks are fixed. {b}l are just the reparameterization B-spline control
coefficients for the l-th shape. Parameter K is a control parameter here chosen to be K = 15.
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It could be shown that this new constraint is more conservative than the original constraints.
We have found that the two options of Jacobian positivity constraints differ only slightly as long
as the landmark resolution of the direct sampled Jacobian constraint option is sufficiently large.

4.3.2 Analytical gradient of constraints

For a gradient based optimization approach, both the gradient of the cost function and the con-
straints with respect to optimization variables are needed. The gradients of the objective function
have been discussed in great details in the previous section. The analytical gradients of the in-
equality constraints based on (35) can also be derived. The gradient of l-th inequality constraint
w.r.t the r-th optimization variable br is

∂gl
∂br

= − 1∑nJ
z=1 e

−KJz({b}l)

nJ∑
z=1

e−KJz({b}l)
∂Jz({b}l)

∂br
(36)

where the Jacobian gradient ∂Jz({b}l)
∂br

when JAs,t and JBs,t can be evaluated easily from (23) and (24).

5 Experimental Results

In this section, we present the numerical results of the proposed correspondence optimization
approach. Experimental results on both synthetic and real 2D and 3D data sets are described. The
use of synthetic data is to check the correctness of the results since the shape variation pattern
is known. The synthetic data set is the “plane-bump” (3D) shapes. The use of real data sets,
including 40 hands (2D) and 34 distal femur bones (3D), is to show the practicality of the proposed
approach. An earlier version of the proposed approach has been used in optimizing correspondence
among 6 aortic shapes [56].

The optimizer is Sequential Quadratic Programming routine in the MATLAB optimization
toolbox. The stopping criterion for the optimizer is chosen as the relative change of objective

function, i.e. f (k)−f (k−1)

f (0)
< 10−6; it is used both in the concatenation of simple mappings and direct

reparameterization schemes. The allowed number of iterations in concatenation of simple mappings
based correspondence optimization is set to be NOPT = 106 in 2D case and NOPT = 105 in 3D case.
Other optimization parameters specific to each problem will be explained later.

The points S(uki ) used for computing the variation in (4) are uniformly sampled in the paramet-
ric domain. The selection of reference shape SR has no noticeable influence on the correspondence
result as demonstrated in results below. In order to obtain a unique solution, one reference shape
instance is chosen out the nS shapes, so that the optimization’s goal is to find nS − 1 reparameter-
ization functions for the remaining shapes that minimize the objective function.

5.1 3D synthetic data: Plane-bump

We test the correspondence with a synthetic plane-bump surface example: the surface is a bivariate
Gaussian distribution function with surface point (x, y, z) defined by

z = he−
(x−µ)2

2σ2 e
− (y−ν)2

2φ2 (37)
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where (µ, ν) is the mean and σ = φ are the standard deviation along x and y direction; h is the
peak height. Restricting the distribution function to a square domain [0, L]×[0, L] that includes the
mean point (µ, ν) gives the plane-bump geometry shown in Fig. 6(a). Such a plane-bump shape can
be approximated by a B-spline surface and Fig. 6(b) show the shape represented by a bi-quadratic
B-spline with 11×11 control points that fits the underlying Gaussian distribution surface. If ν = L

2
and R are both locked and only the horizontal position along the x-axis is allowed to move, then
a training set of several synthetic plane-bump instances each of which is represented by B-splines
are generated. The true shape variation pattern is obviously the translational motion along the
x-axis. Four shapes are generated as seen in Fig. 6(c), and their mean positions µ1, µ2, µ3, µ4 are
uniformly spaced. Each of the four plane-bump B-spline instances inherently implies a parame-
terization. During the generation of parameterization, attention is needed to introduce as little
parameterization distortion as possible so as to greatly reduce the chance of under-sampling in
later procedure. Fig. 6(b) shows the parameterization with fairly low distortion as indicated by its
knot curves for Shape 1; the other three instances are similarly parameterized.

(a) Plane-bump geometry

(b) B-spline represented plane-
bump

(c) 4 instances superimposed

Figure 6: Plane-bump geometry and training set of 4 B-spline surfaces

5.1.1 Desired reparameterization function

Due to the different bump locations along the x-axis, the bumps for four shapes correspond to
different areas in the parameter domain. This difference becomes very clear when we pick the same
point in the parameter domain and compare their associated points in the physical domain for all
the instances. Without loss of generality, we pick five parameter points: uA = (0.45, 0.5),uB =
(0.17, 0.5),uC = (0.73, 0.5),uD = (0.45, 0.22),uE = (0.45, 0.78), associated with the five feature
points on the bump of Shape 2 as shown in Fig. 10(a). Sampled at this common parameter point
set, the physical points on the four shapes are different; the five points on Shape 4 are taken as an
example in Fig. 10(b). The five feature points on Shape 2 denote the bump peak and four bump
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base quadrant points; they cover a square region in the parameter domain.
In the subsequent correspondence optimization, Shape 2 is chosen as the reference shape whose

landmarks are kept fixed. The desired reparameterization functions for the other three shapes
should be one that roughly translate the square region of Shape 2 to those on other shapes. Fig. 7(a)
gives a rough visualization of the parametric grid under the desired reparameterization function
for Shape 4, i.e. the translational motion of square region from the left side (near Shape 2’s bump
area) toward the right side (near Shape 4’s bump area).

5.1.2 Reparameterization by concatenation of Clamped Plate Splines

It’s possible to obtain the optimal correspondence through two reparameterization methods: con-
catenation of CPSs [29] and B-splines. There are 51× 51 landmark points (nP = 2601) uniformly
sampled in each shape; Shape 2 is chosen as the reference shape. After NOPT = 105 iterations of
CPS warps, the deformed landmark grid (originally a regular 51 × 51 grid) under the optimized
reparameterization function D4(u) in Fig. 7(b) approaches the desired trend shifting rightward
along the x-axis very similar to Fig. 7(a). The reparameterization functions for Shape 2 and 3 are
not shown but also exhibit similar trends.

0 0.5 1
0

0.5

1

u

v

Desired R(u,v): Shape 4

(a) Parametric grid under desired
D∗

4(u)

0 0.5 1
0

0.5

1

u

v
R(u,v) shape 4

(b) Parametric grid from optimized
D4(u)

Figure 7: Desired regular landmark grid deformation and parametric grid under optimized D4(u)
with concatenation of Clamped Plate Spline warps.

5.1.3 Reparameterization via B-splines

Optimized reparameterization function The desired optimization obtained by the CPS con-
catenation reparameterization can also be achieved via the B-spline reparameterization approach.
Fig. 8(d) shows the deformed landmark grid (originally a regular 51×51 grid) with 12×12 B-spline
coefficients, which demonstrates similar motion in Fig. 7(b). The deformed landmark grid and con-
trol coefficients grid at different resolutions of 4× 4, 8× 8 and 12× 12 overlapped by the Jacobian
color field are plotted in Fig. 8(a)(b)(c) respectively. The color plot indicates the Jacobian field on
a fixed scale over [0, 2]; a color closer to red has a larger amount of stretch, whereas being closer to
blue means a larger amount of compression.
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(a) nb = 4× 4 (Jmin = 0.34) (b) nb = 8× 8 (Jmin = 0.29)

(c) nb = 12× 12 (Jmin = 0.25)

0 0.5 1
0

0.5

1

u

v

 R(u,v): Shape 4

(d) nb = 12× 12, deformed grid

Figure 8: Optimized reparameterization D4(u) for shape 4 obtained with different numbers of
B-spline coefficients. The color field shows the Jacobian of D4(u).
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Figure 9: Time cost comparison: concatenation of CPS warps vs. direct reparameterization with
B-splines.

Time cost comparison The time cost of entire correspondence optimization at the three repa-
rameterization B-spline resolutions, in comparison to that of the CPS concatenation reparameter-
ization, is shown as the convergence curve of DL history w.r.t to iteration/optimization number in
Fig. 9(a) and w.r.t elapsed time in Fig. 9(b). It can be seen that in order to reduce the DL objec-
tive function to the same level around 45, the direct reparameterization by B-spline with 12 × 12
coefficients takes 668 iterations and 3.4 × 103 seconds; it is about one order of magnitude faster
than the concatenation of CPS approach which takes 5× 104 iterations and 3× 104 seconds.

(a) 5 feature points fixed on Shape 2(b) Badly corresponded feature
points on Shape 4 before optimiza-
tion

(c) Well corresponded feature points
on Shape 4 after optimization

Figure 10: Correspondence before and after optimization with nb = 12 × 12 control points in
reparameterization B-spline.

Correspondence improvement after optimization Fig. 10 demonstrates the significant cor-
respondence improvement with optimization. Before optimization, the five points on Shape 4 shown
in Fig. 10(b) corresponding to the five feature points fixed on the reference Shape 2 in Fig. 10(a)
indicate a poor initial correspondence (Point A signifies bump peak on Shape 2, but it lies almost
at left bump bottom on Shape 4). After optimization with with nb = 12 × 12 reparameterization
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B-spline control coefficients, the five corresponding feature points on Shape 4 are brought very close
to the expected feature locations as shown in Fig. 10(c).
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(d) nb = 16×16: two iterations for Shape
4 picked with violated and resolved con-
straint in Fig. 12

Figure 11: History of aggregated Jacobian constraint for the three non-reference shapes at four
B-spline coefficient resolutions

Constraint history and diffeomorphic conditions Fig. 11 shows the aggregated constraints
of directly sampled Jacobians during the optimization iterations with different B-spline coefficients
of 4 × 4, 8 × 8, 12 × 12 and 16 × 16. At the coarse representation (nb = 4 × 4), the 3 aggregated
constraints for shapes 2, 3 and 4 are not active throughout the optimization process as shown in
Fig. 11(a) where all constraint values are negative. As the B-spline resolution for reparameterization
increases to 8×8, 12×12 and 16×16, some of the aggregated Jacobian become acitive (i.e. positive)
as shown in Fig. 11(b)(c)(d). In the end, these violated constraints all converge to non-positive
values, ensuring the diffeomorphism of the reparameterization.

In order to clearly demonstrate how the aggregated Jacobian constraints can guarantee a dif-
feomorphic reparameterization, we further increase the reparameterization B-spline resolution to
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Figure 12: Diffeomorphism through Jacobian constraints in shape 4 with 16×16 B-spline coefficients

25



16×16. At resolution of 12×12 B-spline coefficients as shown in Fig. 8(c), although the aggregated
Jacobian violates the constraint but the original Jacobian is still positive and no self-intersection
exists. As the resolution further increases to 16 × 16, the aggregated constraint is more severely
violated and finally the original Jacobian drops below zero and self-intersection takes place. The
aggregated constraints history for the three non-reference shapes are shown in Fig. 11(d). We
picked two particular iterations on the constraint history curve of Shape 4; one is where the aggre-
gated constraint is most severely violated shown in square yellow marker called “Violated” , and
the other is the ending iteration with active constraint shown in red circle marker called “resolved”
.

The iteration with “violated” constraint is associated with the Jacobian field in Fig. 12(a)
with the aggregated constraint Jaggrg = 0.33 and the minimum Jacobian values at landmarks is
J raw
min = −0.25 indicating a self-intersection at the vicinity of u = (0.2, 0.5) enclosed by the dotted

square . After the optimization iterations, the Jacobian of the reparameterization from the final
iteration is shown in Fig. 12(b), and stops at an active aggregated constraint Jaggrg = 4.019×10−12,
and the minimum Jacobian values for all 51×51 landmarks is J raw

min = 0.27. Fig. 12(c) and (d) shows
the zoom-in around u = (0.2, 0.5) of Fig. 12(a) and (b) where there is initially self-intersection and
it has since been untangled. This illustrates that when the aggregated Jacobian constraint becomes
inactive, the resulting reparameterization is diffeomorphic.

Jacobian constraint comparison: Jacobian B-splines and sampled Jacobians In addi-
tion to using the aggregated sampled Jacobians JB in (24) as optimization constraint {gl(b)} via
(35), the aggregated Jacobian B-spline option with JA as defined in (23) is also implemented for
comparison. The time cost history between the two constraint options are shown in Fig. 13, where
slightly better computational efficiency with JA is observed.
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Figure 13: Comparison of optimization objective and constraint between constraint option A and
B

In lightly of the ease of implementation using JB and the small difference in the optimization
results, the sampled Jacobian positivity constraint option is adopted for all the 3D experiments in
this paper.

26



5.2 Computational analysis of analytical gradient

Section 4.2 introduces the analytical gradient formula in the form of direct and adjoint sensitivities.
Now we use the 3D plane-bump example presented above to demonstrate the accuracy, correctness
and efficiency of computing analytical gradient by the adjoint method.

5.2.1 Analytical gradient vs. numerical approximation

Within the context of the 3D plane-bump example in Section 5.1, the objective function’s analytical
gradient d f(b)

d br
can be compared with its numerical approximation in terms of accuracy and time

cost. The analytical equation refers to the direct sensitivity in (28) (29) and the adjoint sensitivity
in (33) (34). The numerical approximation uses the finite difference method

d f(b)

d br
≈ f(b + her)− f(b)

h

where the nb × 1 unit vector er = [0, ..., 0, 1, 0, ..., 0]T has “1” is in the r-th row, and the small step
length is h = 10−6.

Table 1 compares the gradients between direct and adjoint sensitivity along with the numerical
approximation. The landmark resolution is nP = 51 × 51, and reparameterization B-spline res-
olution is nb = 4 × 4 as shown in Figure 14(a). There are total nD = 24 optimization variables
for the three non-reference shapes, thus the gradient of the cost function has 24 elements. The
table shows 8 gradient values out of 24 for all three gradient evaluation options. It can been that
the two analytical sensitivities are very close to each other (consistent through the 9th digit), and
numerical approximation gives slightly off result ( consistent only till the 3rd digit).

Table 1: Comparison of analytical (direct and adjoint) and numerical gradients.

d f
d br

Direct Adjoint Numerical

r = 1 3.9459884974 3.9459884974 3.9459915797
r = 2 2.7229409584 2.7229409585 2.7229473574
r = 5 1.3655139494 1.3655139494 1.3655253781
r = 9 2.5544258045 2.5544258045 2.5545317968
r = 13 0.9374377692 0.9374377692 0.9375618646
r = 17 -2.6814822821 -2.6814822821 -2.6814423464
r = 20 0.2758634880 0.2758634880 0.2759022806
r = 24 -0.2397113282 -0.2397113282 -0.2396724241

Table 2: Time comparison between analytical (direct and adjoint sensitivity) and numerical (finite
difference) approach for gradient evaluation.

Time cost (s) Direct Adjoint Numerical

nb = 4× 4 0.1170 0.1098 1.3848
nb = 8× 8 0.1284 0.1225 7.6627
nb = 12× 12 0.2566 0.2329 24.7603
nb = 16× 16 0.4062 0.3719 56.8001
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Table 2 shows the time cost comparison between analytical and numerical gradient compu-
tations. The landmark resolution is nP = 51 × 51. The reparametrization B-spline coefficients’
resolution are nb = 4× 4 nb = 8× 8, nb = 12× 12 and nb = 16× 16. It can be seen that the adjoint
approach is the fastest, the direct one is slightly slower and numerical approximation is the slowest;
the computational efficiency advantage is more noticeable as more B-spline coefficients (i.e. more
optimization variables) are used for reparameterization.
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Figure 14: Optimization variables and directional derivatives

Besides finite difference based numerical approximation of the gradient, one can also compare
analytical gradient with the approximated direction derivatives. Figure 14(a) shows the 4 coefficient
points (b1, b2), (b3, b4), (b5, b6), (b7, b8) associated with Shape 1. These 4 points along with the
remaining 8 for the other two shapes are randomly placed in the parameter domain for testing
purpose. We compute the directional derivative of the 1st coefficient point (b1, b2) of Shape 1.
We subdivide the full 360◦ range into nV angle intervals. The directional derivative at p along
direction vi is approximated by finite difference as ∇vif(p) ≈ f(p+hvi)−f(p)

h . When the full circle is
equally subdivided into nV = 25 directions as shown in Figure 14(b), the directional derivatives are
plotted in arrows pointing in their respective directions. The directional derivative with the largest
magnitude is identified as the numerical gradient, which is fairly close to the analytical gradient
computed by adjoint formula shown in solid green. Table 3 compares the analytical gradient with
the maximum directional derivatives computed for different number of angle intervals. The row of
nV = 25 corresponds to the scenario in Figure 14(b). It can be seen that the numerical results tend
toward the analytical gradient as number of angle intervals increases.

5.2.2 Direct vs. adjoint sensitivity

The key advantage of the adjoint method for computing the sensitivity over the direct sensitivity
lies in the efficiency gain when there are a large number of optimization variables. This is because,
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Table 3: Analytical gradient vA =
[
d f(b)
d b1

, d f(b)d b2

]T
compared with numerical approximation by

directional derivatives vN = v∗∇v∗f(p).

Option Gradient

Numerical
(Finite

Difference)

nV = 25 4.1819 2.2927
nV = 100 3.8808 2.8129
nV = 250 3.9513 2.7152
nV = 500 3.9513 2.7152
nV = 1000 3.9513 2.7152
nV = 2500 3.9445 2.7251
nV = 5000 3.9445 2.7251

Analytical (Adjoint formula) 3.9460 2.7229

as shown in Section 4.2, the number of the linear system (29) solved in the direct sensitivity is
proportional to the number of optimization variables and the number of eigenvalues. The number
of linear system (33) solved in the adjoint sensitivity is proportional to the number of eigenvalues.

The number of optimization variables in optimizing shape correspondence depends on both the
number of reparameterization coefficients per shape and the number of shapes used for building
the SSM. Fig. 15(a) shows the influence of the number of reparameterizatoin (B-spline) coefficients
nb on computation time when using direct and adjoint formulas. Here the landmark resolution
is fixed at nP = 51 × 51 = 2601 for 3D plane-bump, and shape number is fixed at nS = 4. It
can be observed that the computational time cost for the adjoint sensitivity barely increases as the
reparametrization coefficients increase while the cost for the direct sensitivity increases significantly.
Fig. 15(b) shows the influence of shape population size (shape number) nS on computation time
when using direct and adjoint formulas. Here the reparameterization B-spline resolution is fixed at
nb = 12×12 = 144, and the landmark resolution is fixed at nP = 51×51 = 2601. It can be observed
that the adjoint formula is insensitive to the shape number and makes it very efficient for computing
the correspondence sensitivity for a large shape population. In light of such significant efficiency
advantage, the adjoint sensitivity is the method used in the subsequent numerical examples for
correspondence optimization.

5.3 2D real data: Hand

5.3.1 Training set B-spline pre-processing

We test our correspondence optimization on a real data set from 40 raw images [57]. One example
image is shown in Fig. 16(a). A quadratic B-spline is fit to each raw image of the hand contours
and the control points and knots of a B-spline curve are shown in Fig. 16(b). The number of control
points vary from 50 to 63 and generally different from one to another due to the slightly different
shapes in different images. All the 40 B-spline represented hands are superimposed in Fig. 16(c).
Since the generalized Procrustes Analysis involves iterative procedure and drastically slows down
the entire correspondence optimization if it is included, the shape alignment is performed only
once before the actual optimization. This practice further improves the computation efficiency and
is observed to have little influence on the result compared to including alignment during every
optimization iteration. The one-time alignment result is shown in Fig. 16(d).
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Figure 15: Computing time for direct sensitivity and adjoint sensivity w.r.t the number of opti-
mization variables: (a) increasing the number of reparametrization coefficients nb per shape and
(b) increasing the number of shapes.

5.3.2 Optimization via reparameterization B-spline

Optimized reparameterization function and correspondence improvement The repa-
rameterization function is parameterized with 12 B-spline coefficients. The landmark resolution
is nP = 151 and landmarks are sampled uniformly in the parameter domain before optimization.
Shape 1 is selected as the reference shape. For brevity, only Shape 21 is picked out of the remaining
39 shapes to show the correspondence change before and after optimization.

The initial reparameterization function for optimization is the identity function. To obtain
the desired reparameterization function for comparison, the original, manually marked 56 raw
feature points accompanying the data set in [57] are used to determine those parameters of the
detailed feature points of all instances. The 56 features points are plotted on one raw image and
the corresponding B-spline curve in Fig. 16(e) and (f), and they include the finger tips, gaps and
knuckle points. Comparing the 56 corresponding parameters of all the 40 instances lead to the
39 desired reparameterization functions. The initial, desired, and optimized reparameterization
functions of Shape 21 are then plotted in Fig. 17(a). It can be seen that although the desired
function is only a manual approximation under the guide of basic hand anatomy knowledge, the
optimized correspondence matches with it very well. All the other 38 shapes exhibit this similar
results although not shown here.

Out of the 56 original feature points from the images, we plot 11 key feature points for a
more clear demonstration of correspondence improvement due to the optimization. The 11 feature
points located at finger tips and valleys on the reference Shape 1 is shown in Fig. 17(b). Before
optimization the corresponding points on Shape 21 that have the same parameters as those on
Shape 1 are situated at the positions displayed in Fig. 17(c), where most feature points are far
away from the finger tips/valleys where they are expected to be. After optimization, they are
brought to the locations in good correspondence to the feature points on Shape 1 as shown in
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(a) Raw hand image

u=0

Control Point
Knot Point
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(b) Fitted B-spline curve (starts
from gray square)
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(c) Before alignment

TS B−splines after one−time alignment

(d) After alignment (e) Feature points on image

Hand B−splines CP and knots

(f) Feature points on B-spline

Figure 16: Pre-processing the training set of hand data.
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Figure 17: Feature points on Shape 21 before and after optimizing correspondence with respect to
shape 1.
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Fig. 17(d).
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Figure 18: The first 2 modes of statistical model for hand data before optimization. λ1 =
723.2(31.48%), λ2 = 467.7(20.36%)

Statistical modes improvement Fig. 18 and Fig. 19 respectively show the first two modes
of variations from the statistical models with and without correspondence optimization. It can
be seen that the shape variation without the optimization is highly improbable: the middle and
index fingers are all out of proportion in length and width. The first mode of the statistical model
before correspondence optimization is only 31.48% of the total variation. The shape variation
from the optimized correspondence looks realistic. The first mode of the statistical model with
correspondence optimization is 50.24% of the total variation. Such differences in shape variations
from the models are a direct consequence of the optimized correspondence from Fig. 17(c) to
Fig. 17(d) as compared to Fig. 17(b).

SSM evaluation measure improvement To further compare the quality improvement of the
statistical model before and after optimization, the three quantitative measures of SSM proposed
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Figure 19: The first 2 modes of statistical model for hand data after optimization. λ1 =
438.4(50.24%), λ2 = 153.44(18.04%)
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Figure 20: SSM quality before and after optimization
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in [29] are computed. Fig. 20 compares the generalization ability, specificity and compactness
error [29] before and after correspondence optimization.

The quantitative measure of the generalization ability is achieved by the leave-one-out proce-
dure, where one shape is chosen to compare with its reconstructed shape by the statistical model
built from the remaining nS − 1 shapes. More specifically, the reconstructed shape x̃i for the i-th
shape xi can be obtained using (9). Varying the number of modes nm for the linear approximation,
the leave-one-out generalization measure of SSM is given by

EG(nm) =
1

nS

nS∑
i=1

||xi − x̃i||. (38)

The standard error of generalization measure is defined by

σG(nm) =
σ√

nS − 1
. (39)

where σ is the sample standard deviation of EG(nm)
A third useful quantitative measure is the compactness error defined by

EC(nm) =

nm∑
m=1

√
2

nS
λm (40)

It can be seen that the optimized statistical model’s quality has significantly improved in that the
optimized correspondence with SSM leads to smaller error than that of the initial correspondence
for all three measures.

Time cost comparison The time efficiency between the concatenation of Cauchy kernels and
B-spline based reparameterization at coefficient resolution of nb = 4, 12, 20 are compared in Fig. 21,
where the DL history is plotted with respect to both optimization/iteration number and time cost in
seconds. In order for DL to reach the level of 620, Cauchy kernel concatenation takes 105 iterations
and 1.6× 105 s, and direct reparameterization with B-spline at resolution nb = 12 only needs 502
iterations and 1.3 × 103 s. Therefore the B-spline based direct reparameterization is around 100
times more efficient than the concatenation of Cauchy kernels based reparameterization.

5.4 3D real data: Distal femur

5.4.1 Training set pre-processing

The second real data set is a group of 34 human femoral bones. In this study, we focus on the
shape variation of the distal femur portion, which is separated from the whole femur with a manual
planar cut for each shape instance. Fig. 22(a) shows the distal femur shape instance of Shape 1 as
an example. For our pre-processing of the mesh models into the B-spline surfaces, we obtain the
mesh parameterization with a method proposed in [58] that map an open mesh into a rectangle
domain. To enhance the mesh parameterization and to avoid unevenness of the triangles in the
parametric domain, a stretch measure suggested in [59] is then minimized and the obtained mesh
parameterization is shown in Fig. 22(b).

The 4 corners denoted by A,B,C,D for each mesh are manually chosen and considered to be
in good correspondence across the training set, so that only the interior correspondence needs to
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Figure 21: Time cost comparison: concatenation of Cauchy kernels vs. B-spline based reparame-
terization for correspondence optimization

be optimized. With the parameterization of each mesh vertex, a bi-quadratic B-spline surface of
30× 30 control points is then fit on each shape. The resulting B-spline representation of the mesh
shown in Fig. 22(a) is now shown in Fig. 22(c) and (d). This B-spline represented shape provides a
differentiable shape representation for correspondence manipulation. Similar to the hand example,
a one-time alignment is performed only once before the correspondence optimization. It is done by
aligning the triangle meshes with the Iterative Closest Point algorithm.

5.4.2 Optimization via reparameterization B-spline

In the optimization, Shape 1 is selected as reference. Totally 51 × 51 landmarks are sampled uni-
formly in the parametric domain of each shape. When the reparameterization B-spline coefficients
resolution is chosen to be a 8 × 8 grid, the objective DL history is shown in Fig. 23(a), and the
deformed parameterization grid under the optimized reparameterization function for Shape 34 is
visualized in Fig. 23(b). The quantitative evaluation of the optimized SSM in generalization, speci-
ficity error and compactness are also performed and sizable improvements similar to Fig. 20 are
observed.

Fig. 24 shows the time cost comparison between concatenations of Clamped Plate Spline warps
(optimization stopped till the 104-th iteration) vs. direct B-spline based reparameterization (B-
spline coefficients grid from 4 × 4 to 9 × 9) for correspondence optimization for this femur data
set. It can be seen that the direct approach with 6 × 6 reaches the same level of DL around 585
at approximately two orders of magnitude more efficient rate. With the further increase of the
resolution (i.e. the number of B-spline coefficients) of the B-spline reparameterization functions,
the DL can be reduced further than that of concatenation of CPSs, although the computational
efficiency advantage becomes gradually less noticeable.

36
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(d) B-spline and knot curves

Figure 22: Pre-processing the distal femoral bone
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6 Conclusion

This paper introduces a novel reparameterization based method for population-based correspon-
dence optimization for statistical shape modeling. Each shape instance is represented as a differ-
entiable B-spline surface. The reparameterization of each surface is also represented via B-splines.
The diffeomorphic reparameterization is cast as constraints on the B-spline coefficients. This re-
sulting large-scale optimization is then solved via a gradient based approach. To facilitate the
convergence, full analytical gradients of the cost function (i.e. description length) with respect to
manipulation parameters (i.e. B-spline coefficients) have been derived. The adjoint approach for
computing the gradient has found to be especially efficient.

This B-spline based direct diffeomorphic reparameterization is found to be effective on a set of
both synthetic and real data sets. It typically achieves more than one orders of magnitude speed
gain than concatenation of simple mapping based reparamaterization methods such as Cauchy
kernels and CPS warps for correspondence optimization.

In this paper, B-splines are used for both shape representation S(u) and reparameterization
D(u) as in S(D(u)). Such a combination makes it possible to directly use reparameterization vari-
ables to control the movement of landmarks on the surface shapes in a differentiable manner. Such
differentiability makes it possible to develop the efficient gradient based approach for optimizing
correspondence across a large shape population. However, B-spline based shape representation is
limited to rectangular-like shapes. Alternative parameterization techniques that are applicable to
shapes of complex topology are of interest for future research.
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struction and parameterization from range scans. In ACM Transactions on Graphics (TOG),
volume 22, pages 587–594. ACM, 2003.

[15] Natasha Gelfand, Niloy J Mitra, Leonidas J Guibas, and Helmut Pottmann. Robust global
registration. In Proceedings of the third Eurographics symposium on Geometry processing,
pages 197–206, 2005.

[16] Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and
James Davis. Scape: shape completion and animation of people. In ACM Transactions on
Graphics (TOG), volume 24, pages 408–416. ACM, 2005.

[17] Hao Li, Robert W Sumner, and Mark Pauly. Global correspondence optimization for non-rigid
registration of depth scans. In Computer graphics forum, volume 27, pages 1421–1430. Wiley
Online Library, 2008.

[18] Rhodri H Davies, Carole J Twining, Timothy F Cootes, and Chris J Taylor. Building 3-
d statistical shape models by direct optimization. Medical Imaging, IEEE Transactions on,
29(4):961–981, 2010.

[19] Andrew Hill and Christopher J Taylor. Automatic landmark generation for point distribution
models. In Proc. British Machine Vision Conference, volume 2, pages 429–438, 1994.

40



[20] AC Kotcheff, Chris J Taylor, et al. Automatic construction of eigenshape models by direct
optimization. Medical Image Analysis, 2(4):303, 1998.

[21] Rhodri H. Davies, Carole J. Twining, Timothy F. Cootes, John C. Waterton, and Christo-
pher J. Taylor. A minimum description length approach to statistical shape modeling. Medical
Imaging, IEEE Transactions on, 21(5):525–537, 2002.

[22] Rhodri H Davies, Carole J Twining, P Daniel Allen, Tim F Cootes, and Chris J Taylor.
Building optimal 2d statistical shape models. Image and Vision Computing, 21(13):1171–
1182, 2003.

[23] Hans Henrik Thodberg. Minimum description length shape and appearance models. In Infor-
mation Processing in Medical Imaging, pages 51–62. Springer, 2003.

[24] Hans Henrik Thodberg and Hildur Olafsdottir. Adding curvature to minimum description
length shape models. In British Machine Vision Conference, BMVC, 2003.
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