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Abstract

Computing the covariance matrix of a population of shapes is essential for establishing shape correspondence, iden-
tifying shape variation across the population, and building statistical shape models. The covariance matrix is usually
computed from a discrete set of points (a.k.a. landmarks) sampled on each shape. The distribution and density of the
sampled points thus greatly influence the covariance matrix and its spectral decomposition. In order to understand and
overcome such dependency on point sampling, in this paper, we develop accurate and efficient methods for directly
computing continuous formulations of the covariance matrix. We adopt B-splines both as a shape representation and
as a form of reparameterization. We apply B-splines into two continuous formulations for computing the covariance
matrix of shapes. We develop both analytical and efficient numerical methods for computing such matrices. In both
formulations, the covariance matrix from the corresponding numerical approximation converges to the matrix from
the continuous formulations when the number of sampled points in each shape becomes sufficiently large. Their
applications in optimizing shape correspondence via minimizing the description length of a set of shapes is presented.

Keywords: B-splines, covariance matrix, shape statistics

1. Introduction

The growing use of 3D shape acquisition tools and
rapid advancement of shape modeling techniques have
led to increasing interests in shape modeling of a pop-
ulation of objects. Computing the covariance matrix of
a population of shapes is essential for identifying shape
variation across the population and building statistical
shape models (SSMs). Such a statistical shape model
provides a compact characterization of the shape vari-
ability pattern in a set of shapes (training set). Com-
puting the covariance matrix for modeling a population
of objects has witnessed growing applications including
image segmentation [1][2], facial recognition[3], com-
puter animation[4], medical diagnosis [5][6], patient-
specific modeling [7][8], mass customization [9] and bi-
ological growth modeling, etc. Shape variation is usu-
ally extracted through a statistical technique, Principal
Component Analysis (PCA). It is done by eigenvalue de-
composition of the covariance matrix. The eigenvectors
from the decomposition characterize the geometric vari-
ation pattern and the corresponding eigenvalues repre-
sent the amount of such shape variation. The covariance
matrix is usually computed from a discrete set of points

(a.k.a. landmarks) sampled on each shape, leading to
the classical Point Distribution Model (PDM) [10]. Fig-
ure 1(a) shows discrete points sampled on a shape and
such a point set from a collection of shapes shown in
Fig. 1(b) are then used to compute the covariance ma-
trix.

In this paper, we propose the computing of the co-
variance matrix on a spline based continuous represen-
tation of shapes. More specifically, it involves the use
of B-splines as a parametric shape representation (Fig-
ure 1(c) and (d)). It also involves the use of B-splines
to represent the reparameterization of parametric curves
and surfaces. Note that B-spline based shape represen-
tation and B-spline based reparameterizations are inde-
pendent and they could have different number of control
points, knot vectors and degrees. The use of B-splines
for shape representation and for reparameterization is
motivated by the following considerations. B-splines
provide a compact and flexible parametric shape rep-
resentation. B-splines are also capable of representing
various reparameterization functions due to their local
modification property. More importantly, the dual use of
B-splines makes it straightforward to compute directly
from the formulations of the covariance matrix of con-
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(a) Discrete points sampled on
one shape
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(b) Landmarks from four shapes
in a training set

Control Point

(c) Continuous B-spline represen-
tation of a shape

(d) B-spline representation of
four shapes

Figure 1: Discrete and continuous representations of shapes for com-
puting the covariance matrix.

tinuous shapes. In these formulations of the covariance
matrix of a shape population, the input for each ma-
trix entry is two continuous shapes, rather than discrete
points on the two shapes. We refer to these formula-
tions as continuous formulations. Although the contin-
uous formulations [11, 12, 13, 14] have been developed
for some time by extending the discrete form from finite
number of points to infinite number of points, the forms
themselves are deemed hard to compute. In [15], the
entries in the continuous form of the covariance matrix
were approximated by finite points weighted by the area
on the mean shape and it was found that such an approx-
imated continuous form is effective in ensuring faithful
sampling of shapes and preventing sampled point mov-
ing away from “difficult ” areas on the shapes.

In this paper, we apply our B-spline representations
into two continuous formulations of the covariance ma-
trix [13, 14]. We show that, with B-splines, these con-
tinuous forms can be either computed in an analytical
form or approximated through numerical integration.
Two common numerical integration schemes based ap-
proaches, mid-point and Gauss quadratures, are given
for computing the covariance matrix. We also show
that, with these two continuous formulations, one is
amendable for analytical computing (without discretiza-
tion), but is parameterization-dependent and the other is
parameterization-independent and more stable in com-
puting the shape correspondence for building SSM. We
apply the B-spline based continuous formulations of the
covariance matrix in the optimization of the correspon-
dence across a shape population. This is achieved by
reparameterizing each shape to minimize the descrip-

tion length (DL) of the shape population.
The contribution of this paper is that, with B-splines,

these continuous forms of covariance matrix are readily
computable. Both the closed-form and the quadrature
based numerical procedure are efficient and accurate in
the sense it would take a large number of sampled points
with the usual discrete landmark points based formula-
tion to converge to the same covariance matrix. When
data points are parameterized with the chord length
method in B-spline fitting, the resulting covariance ma-
trix does not depend on the data sampling scheme.

The remainder of this paper is organized as fol-
lows. In Section 2, we review the usual discrete for-
mulation for computing covariance matrix and the con-
tinuous formulations from the literature. In Section
3, we apply the B-spline based shape representation
and reparameterization into two continuous formula-
tions and derive closed-form and efficient quadrature
methods for computing the covariance matrix. Section 4
presents closed-form and quadrature methods for com-
puting the covariance matrix from reparameterized B-
spline curves/surfaces. In Section 5, we briefly present
the optimization formulation for minimizing the de-
scription length of a shape population with the com-
puted covariance matrix. In Section 6, we present our
numerical results where we compare the results from
the two formulations and then apply the continuous for-
mulation of the covariance matrix in optimizing shape
correspondence for building SSMs. This paper is con-
cluded in Section 7.

2. Review: discrete and continuous formulations of
the covariance matrix

In this section, we briefly summarize the covariance
matrix formulations that have been proposed in litera-
ture. They can be categorized into discrete and continu-
ous formulations.

2.1. Discrete formulation

We first review currently the most commonly used
discrete formulation for computing the covariance ma-
trix. For more in-depth information about the current
use of the covariance matrix in statistical shape model-
ing, refer to [2, 13].

For a training set of nS shapes {Si} (i = 1, 2, ..., nS ),
the discrete formulation assumes nP landmarks on each
shape so that i-th shape Si is approximated by the shape
vector

Xi
.
=

[
x(1)

i , x(2)
i , ..., x(nP)

i

]T
, (1)
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where every landmark is sampled and lies strictly on
the shape, namely: x( j)

i =
[
x( j)

i , y( j)
i , z( j)

i

]
∈ Si; ∀ j ∈

1, 2, ..., nP.
The discrete covariance matrix is defined by

D .
=

1
nS − 1

nS∑
i=1

(
Xi − X̄

) (
Xi − X̄

)T
, (2)

where nS − 1 is the divider for unbiased sample covari-
ance and the discrete mean shape is

X̄ .
=

1
nS

nS∑
i=1

Xi. (3)

Concatenating the mean-removed shape vectors forms
the shape data matrix defined as follows

X = [X1 − X̄, X2 − X̄, ..., XnS − X̄], (4)

which is of size 3nP×nS ; the covariance matrix (2) could
then be compactly expressed by

D =
1

nS − 1
XXT . (5)

The Principal Component Analysis (PCA) [16] is
frequently used to decompose the covariance matrix
into the principal modes of shape variability via eigen-
decomposition

Dvm = λmvm, (6)

where {λm}(m = 1, 2, ...nS−1) are all the non-zero eigen-
values such that λ1 > λ2... > λnS−1, and {vm} the asso-
ciated eigenvectors or eigenmodes. The mean shape X̄
and modes {vm} along with eigenvalues {λm} constitute
the statistical model, which can provide a more com-
pact representation of the shape variability of the shape
population than the original training set.

An alternative for covariance matrix definition is the
following,

D̃ .
=

1
nS − 1

nS∑
i=1

(
Xi − X̄

)T (
Xi − X̄

)
(7a)

=
1

nS − 1
XTX, (7b)

where the entry-wise definition for D̃ goes as follows

D̃i1i2
.
=

1
nS − 1

(
Xi1 − X̄

)T (
Xi2 − X̄

)
, (8)

and D̃ = {D̃i1i2 } (i1, i2 = 1, 2, ..., nS ). Eigen-
decomposition of the D̃ reveals its eigenvalues λ̃ and

eigenvectors ṽ with those of the original covariance ma-
trix D as

λm = λ̃m, (9a)

vm = X ṽm, ṽm = XT vm. (9b)

Thus the nS × nS covariance matrix D̃ and its original
form D of size 3nP × 3nP have the exact same non-zero
eigenvalues from (9a) and eigenvectors that can be mu-
tually converted by (9b).

This formulation featuring (2) or (7a) computes the
covariance matrix by directly placing a finite set of land-
marks sampled on each shape, which is also the core of
the classical Point Distribution Model [10] in statistical
shape modeling. It is referred to as the “discrete formu-
lation” in this paper.

2.2. Continuous formulations
Suppose the training set shapes all possess the param-

eterization defined over the common parameter domain
U. The i-th shape Si is parameterized with function Si

that maps a parameter point u ∈ U to a point x ∈ R3 on
the shape in the physical domain.

2.2.1. Continuous formulation I
The entry of the nS × nS covariance matrix CI for

formulation I is defined as

CI
i1i2

.
=

1
nS − 1

∫
U

[
Si1 (u) − S̄(u)

]T [
Si2 (u) − S̄(u)

]
du,

(10)
where the mean shape is

S̄(u) .=
1

nS

nS∑
i=1

Si(u). (11)

CI = {CI
i1i2
}(i1, i2 = 1, ..., nS ) is characterized by the

inner product between two mean-removed continuous
shapes

[
Si1 (u) − S̄(u)

]
and

[
Si2 (u) − S̄(u)

]
. This contin-

uous formulation I for the curve case first appeared in
[11] and is adopted in [14] for cardinal spline curves.

2.2.2. Continuous formulation II
This continuous formulation II considers directly the

training set shape geometry and is parameterization in-
dependent; it is defined as follows

CII
i1i2

.
=

∫
U

[
Si1 (u) − S̄(u)

]T [
Si2 (u) − S̄(u)

]
|J(u)| du

(nS − 1)
∫
U

|J(u)| du
,

(12)
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where the additional Jacobian term |J(u)| is the deter-
minant of the Jacobian of a point on the mean shape.
The term “|J(u)| du” corresponds to the “area measure
for integration dµ(u)” in [15], and it is equivalent to the
“length/area” element dA(x) in [13]. The difference in
the formulation (12) is the normalization with the de-
nominator, which makes it easier to examine the con-
vergence properties and the influence of parameteriza-
tion on the continuous formulation, as demonstrated in
Section 6.

For curves, the Jacobian term is

|J(u)| =

∣∣∣∣∣∣d S̄(u)
d u

∣∣∣∣∣∣ , (13)

and for surfaces, the Jacobian term is

|J(u, v)| =

∣∣∣∣∣∣∂ S̄(u, v)
∂u

×
∂ S̄(u, v)
∂v

∣∣∣∣∣∣ . (14)

3. Covariance matrix of spline curves and surfaces

For the above continuous formulations of the covari-
ance matrix, (10) and (12), we show they can be com-
puted efficiently and accurately with Bézier/B-spline
based shape representation, either in closed-form or
with quadrature methods.

3.1. Continuous formulation I with analytical integral

With training set shapes in the Bézier form, the inte-
grand in continuous formulation I (10) is the multipli-
cation of two Bernstein polynomials, and thus the inte-
gration has analytical form. Shapes in the form of B-
splines, i.e. a collection of Béziers, also have analytical
integration for (10).

3.1.1. Bézier curves
We start by considering a collection of shapes that are

represented by degree p Bézier curves. The i-th Bézier
curve is defined by

Si(u) =

p∑
j=0

Bp
j (u)P(i)

j , u ∈ [0, 1] (15)

where Bp
j (u) is the degree p Bernstein basis for the j-th

control point P(i)
j ( j = 0, 1, ..., p). The mean shape is

S̄(u) =
1

nS

nS∑
i=1

Si(u) =

p∑
j=0

Bp
j (u)P̄ j, (16)

which is still a degree p Bézier curve with control points

P̄ j =
1

nS

nS∑
i=1

P(i)
j . (17)

Similarly, the mean-removed i-th shape
[
Si(u) − S̄(u)

]
is

also a Bézier curve with control points

P̂(i)
j = P(i)

j − P̄ j.

The covariance matrix as formulated in (10) becomes

CI
i1i2 =

1
nS − 1

∫ 1

0

[
Si1 (u) − S̄(u)

]T [
Si2 (u) − S̄(u)

]
du

=
1

nS − 1

∫ 1

0

p∑
j1=0

p∑
j2=0

Bp
j1

(u)Bp
j2

(u) P̂(i1)T
j1

P̂(i2)
j2

du

=
1

nS − 1

∫ 1

0

2p∑
j=0

B2p
j (u)Q(i1,i2)

j du,

where

Q(i1,i2)
j =

min( j,p)∑
l=max(0, j−p)

(
p
l

)(
p

j−l

)
(

2p
j

) P̂(i1)T
l P̂(i2)

j−l. (18)

In the above equation, we utilize the fact the product of
two Bernstein polynomials of degree p and q is a higher
order Bernstein polynomial of degree (p + q) as proved
in [17], i.e.

Bp
i (u)Bq

j (u) =

(
p
i

)(
q
j

)
(

p+q
i+ j

) Bi+ j,p+q(u).

In this case multiplication of two degree p Bézier curves
becomes a degree 2p Bézier curve with new control
points Q(i1,i2)

j . By further considering the integral prop-
erty of Bernstein polynomial below [17]∫ 1

0

p∑
j=0

Bp
j (u)Q j du =

∑p
j=0 Q j

p + 1
, (19)

the covariance matrix expression reduces to

CI
i1i2 =

2p∑
j=0

min( j,p)∑
l=max(0, j−p)

(
p
l

)(
p

j−l

)
P̂(i1)T

l P̂(i2)
j−l(

2p
j

)
(nS − 1)(2p + 1)

. (20)

Consequently, the covariance matrix for a Bézier repre-
sented shape population in the continuous formulation
I can be obtained analytically without even resorting to
sampling landmarks on the shapes.
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3.1.2. Bézier surfaces
We assume here the shapes are represented in Bézier

surfaces of the degree p and q along the u- and v-
direction respectively. The i-th shape is a Bézier surface
defined by

Si(u) =

p∑
j=0

q∑
k=0

Bp
j (u)Bq

k(v)P(i)
j,k, u × v ∈ [0, 1]2,

(21)
where Bp

j (u) and Bq
k(v) are the Bernstein basis functions

of degree p and q and P(i)
j,k ( j = 0, 1, ..., p; k = 0, 1, ..., q)

is the control points.
Through the derivation similar to the Bézier curve

case, the covariance matrix entry reduces to

CI
i1i2 =

2p∑
j=0

2q∑
k=0

min( j,p)∑
l=max(0, j−p)

min(k,q)∑
m=max(0,k−q)(

p
l

) (
p

j−l

)(
q
m

)(
q

k−m

)
P̂(i1)T

l,m P̂(i2)
j−l,k−m(

2p
j

)(
2q
k

)
(nS − 1)(2p + 1)(2q + 1)

.

(22)

where P̂(i)
j,k = P(i)

j,k − P̄ j,k is the Bézier control points for

the mean-removed shape
[
Si(u, v) − S̄(u, v)

]
for the i-th

shape and P̄ j,k = 1
nS

∑nS
i=1 P(i)

j,k.

Since a B-spline curve (surface) is simply a piece-
wise collection of Bézier curves (surfaces), the piece-
wise summation of (20) and (22) gives the analytical
integrals for for shapes represented in B-splines.

3.2. Continuous formulation II with analytical inte-
grand

Due to the Jacobian involved in continuous formula-
tion II (12), even for shapes that are parameterized by
Béziers or B-splines, the analytical integration is diffi-
cult to obtain in general. However, analytical form of
the integrand can still be obtained, which would facili-
tate the quadrature based numerical integration.

3.2.1. Bézier curves
If all shapes are represented in Bézier curves of de-

gree p with the definition presented in (15). The Jaco-
bian is degree (p − 1) Bézier defined by

J(u) =

p−1∑
k=0

Bp−1
k (u)P̃k, (23)

where the new control points are

P̃k = p(P̄k+1 − P̄k). (24)

Therefore the covariance matrix in this context reduces
to

CII
i1i2 =

∫ 1

0

2p∑
j=0

p−1∑
k=0

B2p
j (u)Bp−1

k (u)Q(i1,i2)
j P̃k du

(nS − 1)
∫ 1

0

p−1∑
k=0

Bp−1
k (u)P̃k du

, (25)

where Q(i1,i2)
j is defined earlier in (18).

3.2.2. Bézier surfaces and B-spline curves/surfaces
Similarly analytical form of J(u) for Bézier surface,

B-spline curves and B-spline surfaces can be obtained.
Thus the integrand in the second continuous formula-
tion of the covariance matrix can be obtained exactly
for B-spline curves and surfaces.

3.3. Approximation of continuous formulation I and II

The numerical quadrature based approximation of the
continuous formulations leads to what will be referred
to as the “approximated continuous forms” of the co-
variance matrix, not to be confused with the discrete for-
mulation in (8). Such approximated continuous forms
would reveal the link between continuous form and
the usual discrete form. We examine two integration
schemes below: mid-point rule and Gaussian quadra-
ture.

3.3.1. Continuous formulation I
Integration by mid-point rule. The integration in the
curve case by mid-point rule is achieved by discretiz-
ing the parameter domainU = [0, 1] into nP parameter
intervals [̃u j, ũ j+1]( j = 1, ..., nP) of equal length, where
ũ1 = 0, ũnP+1 = 1. Then the approximate covariance
matrix is

C̃I,Mid
i1i2

=
1

nS − 1

nP∑
j=1

[
Si1 (ξ j) − S̄(ξ j)

]T [
Si2 (ξ j) − S̄(ξ j)

]
∆u j,

where the mid-point parameter is ξ j = (̃u j + ũ j+1)/2.
Due to equal intervals and recall that the point S(ξ j) on
the i-th shape can be regarded as the j-th landmark x( j)

i
as in (1), and the above could be written as

C̃I,Mid
i1i2

=
1

nS − 1

nP∑
j=1

[
x( j)

i1
− x̄

]T [
x( j)

i2
− x̄

] 1
nP

=
1

(nS − 1)nP

(
Xi1 − X̄

)T (
Xi2 − X̄

)
.

(26)
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This shows the discrete formulation (2) or (7a) is equiv-
alent to the approximated continuous formulation I (26)

C̃I,Mid
i1i2

=
1
nP

D̃i1i2 . (27)

which holds for the surface case as well by means of
similar derivation.

Integration by Gaussian quadrature. Besides the mid-
point rule to evaluate the integral in (10), another com-
mon form of numerical integration is through Gaussian
quadrature. Since the integrand in (10) is just degree
2p polynomials for curves, Gaussian quadrature with at
least nG ≥ p + 1 quadrature points is expected to give
the exact answer. Similar conclusions can be drawn for
surfaces. In our implementation, each knot span of B-
spline curves corresponds to [-1,1] interval for Gaussian
quadratures.

3.3.2. Continuous formulation II
The above numerical integration approaches can be

similarly used to obtain the approximate forms for con-
tinuous formulation II.

Integration by mid-point rule. The covariance matrix of
the continuous formulation II in (12) for the curve case
can be approximated by

C̃II,Mid
i1i2

=

∑nP
j=1

[
Si1 (ξ j) − S̄(ξ j)

]T [
Si2 (ξ j) − S̄(ξ j)

]
∆L(ξ j)

(nS − 1)
∑nP

j=1 ∆L(ξ j)
,

(28)
where the weight over each segment is the discretized
arc length at the evaluated point S̄(ξ j) on the mean shape
defined by

∆L(ξ j) =


|S̄(ξ j+1)−S̄(ξ j)|

2 j = 1
|S̄(ξ j)−S̄(ξ j−1)|+|S̄(ξ j+1)−S̄(ξ j)|

2 1 < j < nP

|S̄(ξ j)−S̄(ξ j−1)|
2 j = nP

(29)

The approximate covariance matrix of continuous
formulation II in the surface case is defined by

C̃II,Mid
i1i2

=

∑nPu
j=1

∑nPv
k=1 Ŝi1 (ξ j, ηk )̂Si1 (ξ j, ηk)∆A(ξ j, ηk)

(nS − 1)
∑nPu

j=1
∑nPv

k=1 ∆A(ξ j, ηk)
,

(30)

where the ( j, k)-th point on the mean-removed shape is

Ŝi(ξ j, ηk) = Si(ξ j, ηk) − S̄(ξ j, ηk).

The term ∆A(ξ j, ηk) is the discretized area at
the evaluated point S̄(ξ j, ηk), which is the area
of the quadrangle determine by the four vertices
S̄(ξ j, ηk), S̄(ξ j+1, ηk), S̄(ξ j, ηk+1), S̄(ξ j+1, ηk+1). The quad-
rangle area is computed as the sum of the two triangles.

Again, it can be shown that the approximate continu-
ous formulation II (30) for the surface case is equivalent
to the discrete form (2) and (7a) by a scale of 1/nP under
the assumption of uniform sampling of the mean shape.

Integration by Gaussian quadrature. The only differ-
ence in the Gaussian integration of continuous formula-
tion II as compared to that of continuous formulation I
is the added the Jacobian term and its normalizer. Since
the Jacobian term |J| is not a polynomial over the pa-
rameter domain due to the square root norm, analytical
form cannot be derived for the formulation II ; however,
analytical integrand can be obtained in Gauss integra-
tion.

4. Covariance matrix of a shape population under
reparameterization

4.1. Reparameterization via B-splines R(u)

In computing the continuous formulations of the co-
variance matrix of a shape population, either analyti-
cally or approximately, we have adopted B-spline rep-
resentation S(u) of the shapes. In order to study the in-
fluence of shape parameterization (i.e. how points are
sampled or distributed) on the covariance matrix, we
present a method below for computing the covariance
matrix of shapes after B-spline reparameterization, i.e.
S[R(u)] where R(u) is the reparameterization function
represented again in B-splines. Such reparameterization
is also used to optimize correspondence across the shape
population in the next section.

4.1.1. Reparameterization of curves
Reparameterization function in the curve case R(u)

could be directly represented by a degree d B-spline
function as

R(u) =

nB∑
i=0

Nd
i (u)bi, 0 6 u 6 1, (31)

where Nd
i is the B-spline basis function associated

with the i-th reparameterization B-spline coefficient
bi defined on a non-decreasing knot vector U =

{ū0, ū1, ..., ūnB+d+1}. The boundary of the parameter do-
main can be fixed by using a clamped knot vector and
setting b0 = 0, bnB = 1 so that R(0) = 0 and R(1) = 1.
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(a) Reparametrization function R(u)
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(b) Points a, b, c, d, e moved to
A, B,C,D, E after reparameter-
ization

Figure 2: Direct reparameterization of a B-spline curve

Figure 2(a) shows a reparameterization function ex-
pressed by a quadratic reparameterization B-spline
with 10 B-spline coefficients bi. The effect of
the reparameterization applied to the parameter do-
main could be observed by five points, which moved
from a, b, c, d, e to A, B,C,D, E respectively. Af-
ter reparameterization, the parameters are mapped
from u = {0.15, 0.33, 0.51, 0.68, 0.86} to R(u) =

{0.11, 0.29, 0.46, 0.58, 0.88}, and their images in the
physical domain also relocated to somewhere else as
seen in a B-spline represented finger tip in Figure 2(b).

In order to have a valid reparameterization that is free
of self-intersection, it is required to enforce the bijectiv-
ity constraint for diffeomorphic reparameterization by
setting d R(u)/d u > 0. Since R(u) is a degree d B-spline
function, its derivative is a degree (d− 1) B-spline func-
tion with bi+1 − bi as B-spline coefficients [18], we thus
have the following explicit constraint for ensuring dif-
feomorphic reparameterization of curves

bi − bi+1 < 0, i = 0, 1, ..., nB − 1. (32)

4.1.2. Reparameterization of surfaces
The reparameterization function R(u) for surfaces is

a vector field throughout the square parameter domain
with two components [Ru(u, v),Rv(u, v)]. It could be di-
rectly represented by a degree (d, e) B-spline surface
controlled by (nBu + 1) × (nBv + 1) control grid with the
definition

R(u) =

nBu∑
i=0

nBv∑
j=0

Nd
i (u)Ne

j (v)bi, j, 0 6 u, v 6 1, (33)

where Nd
i and Ne

j are the B-spline basis functions of
degree p and q associated with the (i, j)-th B-spline

coefficient 2-tuple bi, j = (bu
i, j, b

v
i, j). They are respec-

tively defined on two sets of non-decreasing knot vector
U = {ū0, ū1, ..., ūnBu +d+1} and V = {v̄0, v̄1, ..., v̄nBv +e+1}.

For a fixed boundary at the four corners and four
sides, two knot vectors are chosen to be of clamped type
and the B-spline coefficients at the four boundaries are
either 0 and 1. The bijectivity of reparameterization for
the purpose of avoiding self-intersection can be guaran-
teed by the positivity of the reparameterization Jacobian
throughout the parameter domain, i.e.

J(u) =

∣∣∣∣∣∣∣
∂Ru(u,v)
∂u

∂Ru(u,v)
∂v

∂Rv(u,v)
∂u

∂Rv(u,v)
∂v

∣∣∣∣∣∣∣ > 0, ∀(u, v) ∈ [0, 1]. (34)

Note J(u) is the Jacobian of the reparameterization
mapping R(u). It is different from the Jacobian of the
B-spline shapes J(u) used in the covariance matrix in
the continuous formulation II.

4.2. Incorporation of reparameterization into the co-
variance matrix

Incorporating reparameteriztion B-splines into the
covariance matrix for both continuous formulations is
achieved by replacing the parameter u with the repa-
rameterization function R(u).

4.2.1. Continuous formulation I
With the reparameterization Ri for each shape Si(u),

the basic form of the covariance matrix in continuous
formulation I in (10) becomes

CI
i1i2

.
=

1
nS − 1

∫
U

Ŝi1 [Ri1 (u)]T Ŝi2 [Ri2 (u)] du, (35)

where
Ŝi[Ri(u)] = Si [Ri(u)] − S̄(R(u)), (36)

and the continuous mean shape (11) becomes

S̄(R(u)) .=
1

nS

nS∑
i=1

Si[Ri(u)]. (37)

Bézier curves under B-spline reparameterization.
When the curve shapes are represented by Bézier with
B-spline reparameterization, we can still derive the ana-
lytical integral after the reparameterization. The reason
is that the composition of degree p Bernstein polyno-
mial in a Bézier curve with a degree d piecewise polyno-
mial in a B-spline reparameterization function just leads
to a degree pd piecewise polynomial.

Suppose a degree d reparameterization B-spline has
its knots dividing the parameter domain [0, 1] into nK

spans, i.e. [ξ̃d+s−1, ξ̃d+s)(s = 1, ..., nK), only over each
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span is it possible to make use of the function composi-
tion properties of Bernstein polynomials for the analyt-
ical derivation of the covariance matrix entry.

The original i-th Bézier curve is equivalent to a piece-
wise degree-p Bézier curve defined on these nK spans,
where the curve on the s-th span is defined by

Si;s(u) =

p∑
jS =0

Bp
jS

(û)P(i;s)
jS
, (38)

and the original reparameterization B-spline for the i-th
shape is equivalent to a piecewise degree-d Bézier

Ri;s(u) =

d∑
jR=0

Bd
jR (û) b(i;s)

jR
, (39)

over the knot span of u ∈ [ξ̃d+s−1, ξ̃d+s) where

û =
u − ξ̃p+s−1

ξ̃p+s − ξ̃p+s−1
∈ [0, 1], s = 1, ..., nK .

The i-th Bézier shape after reparameterization over
the s-th span is just a function composition of degree-p
Bézier Si;s and degree-d Bézier Ri;s, yielding a degree-
pd Bézier due to the properties of Bernstein basis com-
position as suggested by [17]

Si;s[Ri;s(u)] =

pd∑
j=0

(1 − û)pd− jû j Ỹ(i;s)
j , (40)

where Ỹ j is a sum of the scaled Bernstein coefficients.
Releasing the binomial coefficients in (40) restores the
Bernstein basis

Si;s[Ri;s(u)] =

pd∑
j=0

Bpd
j (û) Y(i;s)

j , s.t. Y(i;s)
j = Ỹ(i;s)

j

/(
pd
j

)
(41)

The mean shape is still a degree-pd Bézier curve

S̄s(u) =

pd∑
j=0

Bpd
j (û)Ȳ(s)

j ,where: Ȳ(s)
j =

1
nS

nS∑
i=1

Y(i;s)
j ,

(42)
and the mean-removed shape for the i-th shape is also a
Bézier curve

Ŝi;s[Ri;s(u)] = Si;s[Ri;s(u)] − S̄s(u) =

pd∑
j=0

Bpd
j (û)Z(i;s)

j ,

(43)

with control points: Z(i;s)
j = Y(i;s)

j − Ȳ(s)
j . The covariance

matrix entry is

CI
i1i2 =

∫ 1

0

1
nS − 1

Ŝi1;s[Ri1;s(u)]T Ŝi2;s[Ri2;s(u)] du

=

∑nK
s=1

(
ξ̃p+s − ξ̃p+s−1

)∑2pd
j=0 W (i1,i2;s)

j

(nS − 1)(2pd + 1)
,

(44)

where W (i1,i2;s)
j =

min( j,pd)∑
l=max(0, j−pd)

(
pd
l

)(
pd
j−l

)
(

2pd
j

) Z(i1;s)T
l Z(i2;s)

j−l .

B-spline curves under B-spline reparameterization. B-
spline curves generally have more than one knot span,
an inverse map has to be computed to locate those knot
spans after reparameterization since the B-spline basis
functions are a single polynomial only within each knot
span of the B-spline. For any diffeomorphic reparame-
terization R(u), there exists a unique set of parameters
Ψ = {ψ0, ψ1, ..., ψn+p+1} that are mapped to the training
set B-spline knots Ξ, namely

R(ψk) = ξk k = 0, 1, ..., n + p + 1. (45)

where ξk is the knots of the B-spline curves.
The inversely mapped training set B-spline knots Ψ

with the reparameterization B-spline knots together di-
vide the parameter domain [0, 1] into a new set of spans,
over each of which the function composition property
of Bernstein polynomial can be applied and (40) holds.
The covariance matrix can be analytically computed by
(44) over the new set of spans.

Bézier/B-spline surface under B-spline reparameteriza-
tion. However, such analytical formulas are not avail-
able in the case of B-spline reparameterization for
Bézier or B-spline surfaces. The reason is that the repa-
rameterized domain R(u) is typically not rectangular
and B-spline surfaces are only piecewise polynomial in
rectangular knot intervals.

To sum up, we can evaluate the covariance matrix in
continuous formulation I analytically by strictly follow-
ing the analytical formulas listed in Table 1.

Numerical approximations. After applying the repa-
rameterization function, the required modifications for
mid-point and Gaussian integrations are straightforward
by substituting R(u) for u in all the approximate equa-
tions shown in the previous section.

Table 2 gives the minimum number of quadrature
points required for exact recovery of the covariance ma-
trix of continuous formulation I. The first four rows

8



Table 1: Analytical formulas for continuous formulation I
with/without B-spline reparameterization

Training set
shape type

Without
reparam.

With
reparam.

Bézier curves (20) (44)
Bézier surfaces (22) —
B-spline curves (20) (44)

B-spline surfaces (22) —

are for splines represented shapes without reparameter-
ization and the last four rows with reparameterization.
Note, for shapes represented by B-spline curves with B-
spline reparameterization (7-th row in Table 1), an in-
verse mapping is needed for exact recovery of the co-
variance matrix. For B-spline surfaces with multiple
knots upon B-spline reparameterization (8-th row in Ta-
ble 1), Gauss quadrature cannot guarantee exact recov-
ery of the covariance matrix.

Table 2: Minimal Gaussian abscissae number per knot span n∗G for
exact recovery of the covariance matrix of continuous formulation I

Shape representation {Si(u)}
Reparam.

B-spline {Ri(u)}
Gauss Pt.
Number

Type Degree Degree n∗G
Bézier curve p — p + 1

Bézier surface p × q — (p + 1)(q + 1)

B-spline curve p — p + 1

B-spline surface p × q — (p + 1)(q + 1)

Bézier curve p d pd + 1

Bézier surface p × q d × e (pd + 1)(qe + 1)

B-spline curve p d pd + 1

B-spline surface p × q d × e —

4.2.2. Continuous formulation II
With reparameterization of the shapes, the basic form

(12) of the covariance matrix in continuous formulation
II becomes

CII
i1i2

.
=

∫
U

Ŝi1 [Ri1 (u)]T Ŝi2 [Ri2 (u)] |J(R(u))| du

(nS − 1)
∫
U

|J(R(u))| du
(46)

where the continuous mean shape (11) becomes (37),
J(R(u)) is computed from the mean shape, and
Ŝi[Ri(u)] is defined as in (36).

The analytical integrand can be similarly achieved
with the procedure described in Section 3.2.1. This an-
alytical integrand can then be used in the mid-point or
Gauss quadrature method for integrating entry in the co-
variance matrix.

5. Shape Correspondence Optimization via Repa-
rameterization

With the B-spline representation of reparameteriza-
tion functions R(u) and the diffeomorphic conditions
(32) and (34) presented in Section 4.1.1 and 4.1.2, , we
thus have the following optimization formulation for us-
ing B-spline based reparameterization for manipulating
shape correspondence in B-spline curves/surfaces:

min
b

∑
λi≥λcut

[
1 + log

λi(b)
λcut

]
+

∑
λi<λcut

λi(b)
λcut

(47a)

s.t. C(b) vi(b) = λi(b)vi(b) (47b)

vT
i (b)vi(b) = 1, i = 1, ..., nS (47c)

g(b) < 0 (47d)

In this formulation, b is the set of optimization vari-
ables and represents the collection of interior B-spline
coefficient tuples b for B-spline reparameterization of
ns − 1 shapes. The objective function f (b) is the sim-
plified description length as proposed in [19], which is a
function of eigenvalues computed from (47b) and (47c).
The covariance matrix C = 1

nS−1 Ĉ could be computed
by analytical form or numerical schemes (mid-point or
Gauss quadrature). The constraint (47d) represents the
diffeomorphic conditions, i.e. (32) for curves and (34)
for surfaces, each of which is a function of optimization
variables b.

6. Numerical examples

In this section, we compare numerical results of com-
puted covariance matrices from two continuous formu-
lations under different discretization resolutions. In or-
der to compare the analytical form of the covariance
matrix (10) from continuous formulations and their ap-
proximations through mid-point or Gauss quadrature
and their convergence, we compare the the covariance
matrix norm and its largest eigenvalue. The matrix norm
used is the Frobenius norm of a m × n matrix C = {Ci j}

(i = 1, ...,m; j = 1, ..., n)

|C| =

√√ m∑
i=1

n∑
j=1

C2
i j. (48)
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We show the convergence of both formulations, but first
formulation leads to different covariance matrix norm
under different reparameterizations. We then compare
the resulting shape correspondence in building the SSM.

6.1. Covariance matrices from discrete points and
spline representation of shapes

In order to compare the computed covariance ma-
trices from two forms of shape representations: dis-
crete points and B-spline based continuous representa-
tion, we compare the computed matrices for a simple
set of shapes: four circular arcs as shown in Figure 3(a).
These four quarter circle shapes can be represented with
the following parametric form

S1(u) =

[
sin

(
π

2
u
)
, cos

(
π

2
u
)]

S2(u) =

[
1 − cos

(
π

2
u
)
, sin

(
π

2
u
)]

S3(u) =

[
1 − cos

(
π

2
u
)
, 1 − sin

(
π

2
u
)]

S4(u) =

[
sin

(
π

2
u
)
, 1 − cos

(
π

2
u
)]

(49)

where u ∈ [0, 1]. With such explicit, continuous repre-
sentations of arcs, the covariance matricies of continu-
ous formulation I (10) and formulation II (12) can be di-
rectly computed, without resort to discrete sampling or
B-spline fitting. The resulting matrix norms are respec-
tively 0.1284 for formulation I and 0.1200 for formu-
lation II. We then compute the two forms of covariance
matrices from sampled discrete points and B-spline rep-
resentations of sampled points. It should be noted that
the non-rational form of B-splines used in this work can
only approximate the circular arcs. Exact representation
of a circular arc would need a rational form of B-splines.

We choose three forms of point sampling on the
shapes (Figure 3(b)): uniform sampling based on the an-
gle span θ, uniform sampling along x axis, and uniform
sampling along each chord of the arcs. The span angle
based uniform sampling also corresponds to arc-length
based uniform sampling since the underling shapes are
circular. Figure 3(c), (d) and (e) respectively show the
sampled points based on the three sampling schemes
where the number of sampled points nP = 16. The
norm of the discrete covariance matrix 1

nP
D̃i1i2 using

the discrete formula (7a) is shown in Figure 3(f), where
the x-axis indicates the number of sampled points that
ranges from 6 to 104. The norm of another weighted
discrete covariance matrix (28) with substituting sam-
pled points x( j)

i for Si(ξ j) is shown in Figure 3(g). It can
be seen that, for each sampling scheme, different num-
bers of sampled points correspond to different covari-
ance matrix norms. As the number of sampled points

increases, the covariance matrix norm of each sampling
scheme converges, but converges to different values, de-
pending on the underling sample scheme. For all three
sampling schemes, it takes at least 103 sampled points
to converge. The norms of the discrete covariance ma-
trix under the angle span, X-coordinate, and chordal dis-
tance sampling schemes converge to 0.1284, 0.1309 and
0.1200 respectively as shown in Figure 3(f). When us-
ing weighted points in the covariance matrix; they con-
verge to 0.1200, 0.1310 and 0.1200 as shown in Fig-
ure 3(g). Among the three point sampling schemes,
only angle span based sampling has a converged value
consistent with reference value 0.1284 since it reflects
the arc-length parameterization. This example clearly
demonstrates that, for the covariance matrix from dis-
crete points based representation of shapes, it takes a
large number of data points to reach the converged co-
variance matrix and the resulting matrix depends on the
sampling density (number of points) and distribution
(sampling scheme).

For the B-spline based covariance matrix, we first fit
B-spline curves based on the discrete points sampled
with the above three schemes. B-spline curve/surface
fitting usually involves three phases [20], knot deter-
mination where a set of knot parameters for B-spline
shapes need to be determined, data parameterization
where for each data point Q j a corresponding param-
eter ū j needs to be decided, and control point calcula-
tion where control points Pi are computed so that the
error between the data and the resulting B-spline shape
is minimized, i.e.

min
{Pi}

nP∑
j=1

|Q j − S(ū j)|2.

We choose uniform distribution of knots with clamped
end conditions. For data parameters, we studied three
common forms of data parameterization shown in Fig-
ure 4: a) equidistant ∆ū j = constant; b) chord length
∆ū j = ||∆Q j||; and c) the centripetal method ∆ūi =√
||∆Q j+1 − Q j|| [21] where Q j represents the data point.
Figure 5(a) shows an example of fitting nP =6 sam-

pled points with a quadratic B-spline of nCP = 4 con-
trol points, and Figure 5(b) is the fitted B-spine training
set. In the convergence study of formulation I (com-
puted by the analytical formula (20)) and formulation
II computed by Gaussian quadrature approximation of
(12) respectively, we choose nP = 100 sampled points
for B-spline curve fitting, and varying the number of
control points nCP from 4 to 20. The results of two
continuous forms of covariance matrices computed with
fitted B-splines curves are shown in the remainder of

10



12

3 4

Training set: QuarterCircle
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(b) Three sampling schemes: an-
gle θ, x-coordinate, and chord d

Uniform CentralAngle sampling

(c) Angle span sam-
pling

Uniform Xcoord sampling

(d) X-coordinate
sampling

Uniform ChordalDistance sampling

(e) Chordal distance
sampling
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(g) Covariance matrix norm from
weighted discrete points

Figure 3: Discrete sampling and corresponding covariance matrix
norms. The sign (circle, square and triangle) in Figures 3(f) and
3(g) corresponds to respectively point sampling from angle span, x-
coordinate and chord distance based schemes.

Qj

Pi

Data Point Control Point

(a) B-spline fitting from discrete data

0 1ūj

(b) Equidistant data parameterization:
∆ū j = constant

0 1ūj

Data Parameter Knot Parameter

(c) Chord length data parameterization:
∆ū j ∼ ||∆Q j+1 − Q j ||

0 1ūj

(d) Centripetal data parameterization:
∆ū j ∼

√
||∆Q j+1 − Q j ||

Figure 4: B-spline fitting with different methods of data parametriza-
tion.

Figure 5 where three data parameterization methods for
three sampling schemes are shown respectively in the
last three rows in Figure 5. We can see from this figure
that

• Even though covariance matrices from discrete
points all need at least a thousand points to con-
verge as shown in Figure 3, the convergence of
the covariance matrix from B-splines only needs
fewer than 10 control points as shown in Figure 5.
Thus, B-spline based shape representation is very
efficient for computing the covariance matrix.

• With the chord-length based data parameteriza-
tion in B-spline fitting, the resulting covariance
matrices for both forms of continuous formula-
tion are independent from point sampling schemes,
as shown in Figure 5(e) and 5(f). This is be-
cause, when sufficient number of data points are
used in fitting, regardless of sampling schemes, the
chord-length based data parameterization essen-
tially corresponds to arc length based data param-
eterization. Thus B-spline based shape representa-
tion under chord length based data parameteriza-
tion can lead to accurate calculation of the covari-
ance matrix, regardless of point sampling schemes.
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(a) Fitted B-spline curve (b) Fitted B-spline training set
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(c) Equidistant data parameteriza-
tion, formulation 1
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(d) Equidistant data parameteriza-
tion, formulation 2
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ContinuousForm1, ParamFit c

(e) Chord length based data pa-
rameterization, formulation 1
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ContinuousForm2

(f) Chord length based data pa-
rameterization, formulation 2
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(g) Centripetal data parameteriza-
tion, formulation 1
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(h) Centripetal data parameteriza-
tion, formulation 2

Figure 5: Covariance matrix norms from B-spline curves fitted with
three methods of data parameterization. The sign (circle, square and
triangle) corresponds to respectively angle span, x-coordinate and
chord distance based point sampling scheme shown in Figures 3.

However, for other forms of data parameteriza-
tion such as equidistant and centripetal methods,
the B-spline based covariance matrix still depends
on the data parameterization method. The reason
is that any data parameterization other than the
chord length based method would create a corre-
spondence among shapes that is different from that
under arc length based parameterization. Thus, the
resulting covariance matrix may differ depending
on the underlying data parameterization.

6.2. Convergence of approximated continuous formula-
tions

A plane-bump shape instance is represented by a bi-
quadratic B-spline surface by 11 × 11 control points as
shown in Figure 6(a) where the knot curves are shown
in blue. The training set is composed of 4 such B-spline
surfaces, which differ in horizontal position of the bump
along the u-direction as seen in Figure 6(b).

(a) Shape in bi-qaudratic B-spline
surface

(b) 4 B-spline surfaces superim-
posed

Figure 6: Four B-spline represented plane-bumps superimposed. nS =

4; p = 2, q = 2.
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Figure 7: Convergence of covariance matrix norm and eigenvalues
with continuous formulation I and its approximation by the mid-point
scheme for the plane-bump training set shown in Fig. 6.

In the approximated continuous formulation I
through mid-point, nP = nPu × nPv = n2

Pu landmarks
are sampled on each B-spline surface throughout the
parameter domain U = [0, 1] × [0, 1]; and a series of
landmark numbers for nPu along both u- and v-direction
ranging from 10 ∼ 103 are used. The analytical co-
variance matrix is computed following derived equation
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(22). The matrix norm of the analytical covariance ma-
trix is |C∗| = 8.15 and the largest analytical eigenvalue
is λ∗1 = 8.03. It can be seen from Figure 7 that both the
covariance matrix and the eigenvalues under the approx-
imate formulation are approaching the analytical values
as the number of landmarks tends toward infinity. In ad-
dition, the analytical values can also be efficiently and
exactly obtained by integration with Gauss quadrature,
where only n∗Gu = n∗Gv = 3 Gauss abscissae are needed
per knot span in each direction.
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Figure 8: Convergence of the covariance matrix norm and eigenvalues
with continuous formulation II and its approximations for the plane-
bump training set shown in Fig. 6.

In the mid-point based continuous formulation II
(30), nP = nPu × nPv = n2

Pu landmarks are sampled
on each B-spline surface throughout the parameter do-
mainU = [0, 1] × [0, 1]; and a series of landmark num-
bers for nPu along both u- and v-direction ranging from
10 ∼ 103 are used. The converged covariance matrix
is computed with the Gauss quadrature (nG = 20) and
the matrix norm of the most accurate covariance matrix
is |C∗| = 8.45 and the largest analytical eigenvalue is
λ∗1 = 8.32. Figure 8 shows that the covariance matrix
and the eigenvalues computed with different number of
mid-points and Gauss quadrature points. They all con-
verge as the number of landmarks tend toward infinity
or the number of quadrature points increase. It is clear
that the matrix norm and the eigenvalues can be more
efficiently and accurately obtained with Gauss quadra-
ture than with mid-point.

Comparing Figure 7 and Figure 8, one can see that
approximations of both formulations I and II converge
as sufficient landmark points are used. However, they
converge to different values, 8.154 and 8.45 respectively
for the matrix norm, and 8.027 and 8.32 respectively for
the largest eigenvalue.

6.3. Convergence of continuous formulations under
reparameterization

In this example, we show that, with the first continu-
ous formulation, the converged values may be different
with different parameterizations and the second formu-
lation is parameterization-independent. In the training
set of line-bumps, each line-bump shape is represented
by a quadratic B-spline governed by 12 control points
as shown in Figure 9(a). The training set then consists
of 4 such B-spline curves, with only the horizontal posi-
tion of the bump is different as displayed in Figure 9(b).
This synthetic training set is just the open curve version
of the benchmark box-bump as used in [22], with the
bump feature further highlighted.

Control Point Knot Point

(a) Shape in quadratic B-spline of
12 control points

1 2 3 4

(b) 4 B-splines curves superim-
posed

Figure 9: Line-bump training set represented as B-spline curves. nS =

4; p = 2.

The reparameterization functions are shown in Fig-
ure 10 where the color field of Figure 10(a) signifies the
original parameterization of Shape 1. It is also shown
as the identity function in Figure 10(b). Two reparam-
eterization functions Ra(u) and Rb(u) in Figure 10(b)
are used to generate different parameterizations in Fig-
ure 10(c) and Figure 10(d) respectively. Ra(u) curved
downward with a slight deviation from identity func-
tion makes the parameterization slightly squeezed to-
ward u = 0; Rb(u) curved upward with a large devia-
tion from identity function makes the parameterization
severely squeezed toward u = 1.

We applied the three reparameterization functions to
all B-spline represented line-bumps. Figures 11 and
Figure 12 respectively show the covariance matrix norm
and the largest eigenvalues of the line-bump under the
three different reparameterizations for both formula-
tions.

The dotted straight lines in Figure 11(a) and Fig-
ure 12(a) indicating the convergence limit for contin-
uous formulation I are computed by the analytical for-
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Figure 10: Different reparameterizations of line-bump shapes.

mula (44); the dotted straight lines in Figure 11(b) and
Figure 12(b) are computed by using nG = 20 Gauss
quadrature points per knot span. Figure 11(a) shows,
with continuous formulation I, the matrix norms con-
verge to different values with the original parameteri-
zation and reparameterization Ra(u), and Rb(u). On the
other hand, with continuous formulation II as shown in
Figure 11(b), the matrix norms all converge to the same
value with three different reparameterizations. Similar
behaviors can be observed for the largest eigenvalue λ1
as shown in Figure 12. This shows that continuous for-
mulation II is parameterization independent and charac-
terizes the intrinsic geometric property of shapes.
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Figure 11: Covariance matrix norm |C| under continuous formulation
I (CI ) and formulation II (CII ) with mid-point integration under three
parameterizations for the line-bump training set shown in Fig. 9.

6.4. Optimizing shape correspondence
We extend the two continuous formulations with mid-

point based integration to optimization of shape corre-
spondence to examine how the landmark resolution and
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Figure 12: Largest eigenvalue λ1 under continuous formulation I (CI )
and formulation II (CII ) with mid-point integration under three pa-
rameterizations for the line-bump training set shown in Fig. 9.

distribution in the usual discrete formulation would af-
fect the correspondence optimization. It is found that at
a sufficiently dense resolution of landmarks, the differ-
ence between the two formulations’ approximation does
not lead to significant disparities in the resulting shape
correspondence. However, when the number of land-
marks nP drops to a certain level, the two formulations
often lead to entirely different results in the optimized
group-wise correspondence and/or landmark distribu-
tion. We show two examples below, which illustrate
the continuous formulation II’s advantage over formu-
lation I in terms of correspondence quality and faithful
representation of the shapes.

6.4.1. Line-bump
For the line-bump training set consisting of nS = 4

B-spline curves, nP = 19 landmarks are used to rep-
resent each shape instance and nb = 16 control coef-
ficients are used to model reparameterization B-spline
for each shape instance. The initial landmark configu-
ration is shown in Figure 13(a), and the five picked (the
5, 9, 10, 14, 16-th) landmarks A,B,C,D,E highlighted in
green indicate a poor initial correspondence where
bump corners do not correspond across the training set.

Correspondence optimization is conducted with the
covariance matrix computed by both continuous for-
mulation I and II’s approximations. The optimization
history of DL objective function is shown overlapped
in Figure 13(b), and the optimized reparameterization
functions {Ri(u)} for formulation I and II are shown in
Figure 13(c) and (d) respectively. It is observed that for-
mulation I causes an almost flat platform near the two
ends while formulation II does not; this suggests the for-
mulation I could lead to a severe collapse of landmarks
during correspondence optimization. The collapsed
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Figure 13: Shape correspondence optimization with the covariance
matrix of continuous formulation I (CI ) and formulation II (CII ).
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Figure 14: The optimized correspondence from continuous formula-
tion I (CI ) and formulation II (CII ).

landmarks near the two ends after correspondence op-
timization for formulation I are shown in Figure 14(a),
where there are barely any landmarks used for rep-
resenting the bump and the optimized correspondence
hardly has any improvements either as revealed by the
locations of the five feature landmarks. On the other
hand, optimized landmark result in Figure 14(b) gen-
erated by formulation II gives a remarkably enhanced
correspondence as demonstrated by the correspondence
of the five feature landmarks A,B,C,D,E. Moreover, the
optimized landmarks form a more reasonable distribu-
tion and shape representation than that of formulation
I.

To further shed light on the differences between the
two formulations, the mean shapes consisting of opti-
mized landmarks are also plotted in Figure 14(c) and
(d) respectively for formulation I and II. Recall that
as a result of the difference between (10) and (12) re-
garding the Jacobian term |J(u)|, the associated approxi-
mate formulations (26) and (28) differ only in the length
weight term ∆L(ξ j). The main part in the integrand,[
Si1 (ξ j) − S̄(ξ j)

]T [
Si2 (ξ j) − S̄(ξ j)

]
, are the same; and it

is just the landmarks in a shape instance minus the mean
shape landmarks. In the second formulation, the col-
lapsing of landmarks around point M as shown in Fig-
ure 14(c) would have led to larger weight in ∆L(ξ j) for
landmark M than that in the first formulation. Thus,
the second formulation has the effect of alleviating land-
mark collapse during correspondence optimization.

6.4.2. Distal femur
In this 3D real training set case of distal femurs, it has

nS = 10 B-spline surfaces, each of which is represented
by a bi-quadratic B-spline surface with 30 × 30 control
points. nP = 31 × 31 landmarks are used to represent
each shape instance and nb = 8 × 8 control coefficients
are used to model reparameterization B-spline for each
shape instance.

The initial landmark configuration is shown in Fig-
ure 15(a). The optimization history of DL objective
function for both formulations is overlapped in Fig-
ure 15(b). The constraint history of Shape 9, g9(u)
for enforcing the positivity of Jacobian J(u) in (34),
is shown in Figure 15(b), where optimized constraints
become active. The optimized reparameterization func-
tion {Ri(u)} parametric grids for formulation I and II are
shown in Figure 15(d) and (e) respectively.

The optimized landmarks for both formulations give
comparable correspondence improvements in terms of
the three measures for statistical shape models (general-
ization ability, specificity and compactness [13]). How-
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Figure 15: Correspondence optimization for 10 femur bones with the
covariance matrix of formulation I and II.

(a) Optimized landmarks using approximation of formulation I: im-
proved correspondence as indicated by reduced DL objective func-
tion, but with rather insufficient landmarks for shape representation in
the curved regions on the two sides.

(b) Optimized landmarks using CII approximation: improved corre-
spondence as indicated by reduced DL objective function, and with
improved correspondence and with sufficient and reasonably dis-
tributed landmarks for shape representation in the two curved regions.

Figure 16: The difference between the mid-point integration of con-
tinuous formulation I (CI ) and formulation II (CII ) for computing the
covariance matrix can lead to substantial difference in the resulting
shape correspondence after the optimization.
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ever for formulation I, the optimized landmarks are not
distributed in a way to sufficiently represent the under-
lying shape due to under-sampling in the bump region
as shown in Figure 16(a). In contrast, formulation
II not only gives comparable correspondence improve-
ment, but also provides a sufficient shape sampling and
reasonable optimized landmarks distribution as shown
in Figure 16(b). This desirable feature of formulation
II comes from the shape Jacobian term and its approxi-
mation, i.e. the length/area weight associated with land-
marks, which incorporates the effect of geometric vari-
ation from each shape instances into the whole training
set’s statistical shape variation.

7. Conclusion

In this paper, we have presented methods for accu-
rately and efficiently computing continuous formula-
tions of the covariance matrix where B-splines are used
both as a shape representation and as a form of repa-
rameterization. We have shown, with B-spline repre-
sentation of the shapes, the formulation I is amenable
to analytical computing without sampling or discretiza-
tion. Numerical approaches based on mid-point and
Gauss quadrature are developed for approximating both
continuous formulations. We have shown that the
first formulation is parameterization-dependent, i.e. it
may lead to different covariance matrices with differ-
ent parameterizations, and the second formulation is
parameterization-independent. We have demonstrated
that the proposed closed-form and numerical procedure
for computing the covariance matrix are both accurate
and efficient in the sense that it would take many more
discrete points in the usual discrete form of the covari-
ance matrix to converge to the same matrix. We have
also shown that, when data points are parameterized
with the chord length method in fitting B-spline curves,
the resulting covariance matrix does not depend on the
point sampling scheme.

With B-spline representations, both formulations
have been successfully applied in correspondence opti-
mization for minimizing description length of the statis-
tical shape model. Our numerical results demonstrate,
with sufficient sampling, both formulations lead to sim-
ilar shape correspondence. When the sampling is not
sufficient, the second formulation is more robust in alle-
viating potential collapse of landmarks.

Our approach is based on B-spline based parametric
curves and surfaces. How to extend it to shapes of com-
plex topology is a challenge for future research.
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