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ABSTRACT
Patient-specific computational study of aortic disease pro-

vides a powerful means for diagnosis and pre-operative plan-
ning. However, creating patient-specific computational models
can be time-consuming due to the fact that anatomical geome-
tries extracted from clinical imaging data are often incomplete
and noisy. This paper presents an approach for constructing sta-
tistical shape models (SSMs) for aortic surfaces with the eventual
goal of mapping the mean aortic geometries to raw surface data
obtained from the clinical images for each new patient so that
patient-specific models can be automatically constructed.

The input aortic models in this study come in the form of
triangle meshes generated from CT scans on 6 patients. Statis-
tical models with modes that characterize the variation pattern
are found after optimizing the group-wise correspondence across
the aorta training set. We use the direct reparameterization ap-
proach to efficiently manipulate shape correspondence. We use

∗Correspondence can be addressed to Dr. Xiaoping Qian at
qian@engr.wisc.edu.

B-spline based differentiable shape representation for the train-
ing set and use the adjoint method for deriving analytical gra-
dients in a gradient based approach for manipulating the shape
correspondence to minimize the description length of the result-
ing SSM. Our numerical result shows that the evaluation mea-
sures of the optimized statistical model have been significantly
enhanced.
Keywords: Ascending aorta, Statistical Shape Model (SSM),
Shape Correspondence, Direct Re-parametrization, Adjoint
method, B-spline

1 INTRODUCTION
Aortic diseases, including aneurysm of the ascending aorta

and sinuses as well as calcification of the aortic valve, are sig-
nificant causes of morbidity and mortality. Aortic aneurysm can
lead to dissection and rupture, two likely fatal events. Aneurysms
deemed at risk are surgically repaired by removing the dilated
portion of the vessel and removing it with a prosthetic graft. Aor-
tic valve disease is also often treated with prostheses. Tradition-
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ally, the diseased native aortic valve was surgically removed and
replaced with a prosthetic valve. More recently, aortic valve dis-
ease has also been treated via transcatheter aortic valve (TAV)
replacement, where a prosthetic valve is deployed over the na-
tive valve leaflets. Biomechanics largely dictate the success of
these various treatments. For instance, a TAV device which ex-
erts excessive radial force may rupture the aortic root, whereas
insufficient radial force may lead to device migration.

An understanding of the aortic biomechanics can offer sci-
entific rationale to design better treatments for these conditions.
Computational analyses, e.g. structural finite element (FE) and
computational fluid dynamic (CFD) simulations, are particularly
useful for improving prosthetic device design because numeric
analysis allows for a fast and inexpensive way of analyzing con-
ceptual designs and design optimization [1]. However, the ac-
curacy of these simulations are highly dependent on the material
properties, geometries, and boundary conditions prescribed, and
for the human ascending aorta and aortic root, these parameters
are not easily defined and they can vary greatly from patient to
patient. In the past, many groups have used idealized aortic ge-
ometries to simplify their analyses, but this will detract from the
simulation accuracy.

In the past few years, clinical diagnostic imaging modali-
ties have advanced significantly. Today, multi-slice CT, MRI,
and 3D echocardiography can offer high resolution images of
vasculatures that were previously unavailable. It is now feasible
to utilize such medical images to accurately reconstruct 3D ge-
ometries of arteries and build computational models to perform
structural analysis of the ascending aorta and aortic root wall on a
patient-specific level. Such analysis can be used for pre-operative
planning to determine the proper prosthetic device, size and posi-
tioning for a particular patient. Currently, these type of decisions
are made primarily based on the physician’s intuition and expe-
rience.

The caveat is that the generation of patient-specific compu-
tational models can be time consuming. Often the anatomical
geometries extracted from the clinical imaging data are not suit-
able for computational analysis, i.e. the surface data is too noisy
or contains artifacts or holes, due to poor image resolution. As a
result, significant post-processing of the 3D geometry data is of-
ten necessary. In order for simulation-based pre-operative plan-
ning to be realistic in the clinical setting, this process must be
expedited.

One possible solution to this problem is to create statistical
shape models (SSMs) for the ascending aorta and aortic root. The
mean ascending aorta and aortic root geometry could be mapped
directly to the raw surface data obtained from the clinical im-
ages for each new patient, which will greatly reduce user input
and consequently the time to complete the 3D geometry recon-
struction process for the incoming patient. Aortic SSMs will
also facilitate future probabilistic studies of the aortic biome-
chanics. While patient-specific analyses are essential for accu-

rate pre-operative planning, population-based probabilistic stud-
ies will be pivotal in the design of reliable valve and vessel pros-
theses and implantation techniques. The design of these devices
should be robust to account for uncertainty in the tissue proper-
ties and anatomical geometries to avoid clinical adverse events
and clarify patient selection criteria. Probabilistic computational
analysis permits a rigorous quantification of various uncertain-
ties and has been successfully applied to the design and analysis
of a variety of engineering systems, including space vehicles and
automobiles [2], and more recently, orthopedic implants [3–6].
In a probabilistic ascending aorta and aortic root computational
model, the anatomical geometry will be defined as a random vari-
able with shape variation defined from the aortic SSMs.

Statistical shape modeling is a powerful tool to capture the
shape variation pattern across a group of shapes belong to a cer-
tain shape class [7]. SSM has seen many promising applica-
tions in a great variety of medical fields such as image analy-
sis [8], image segmentation [9] [10], organ/bone shape recon-
struction [11] [12], treatment tracking [13], patient-specific sim-
ulation [14] [15], diagnostics [16] [17] [18] and femoral allo-
graft [19] and cam femoroacetabular impingement [20]. The
utility of the statistical model relies on a sufficiently large train-
ing set data pool, and more importantly, a reasonably good cor-
respondence across the entire training set. A good quality of
the SSMs is usually obtained via manipulating correspondence
across the shape populations in order to optimize some quality
metric, e.g. the description length of the resulting SSM [21] [22].
The optimization is currently done via concatenation of multiple
re-parametrization functions as proposed in [23], which is sub-
ject to undesirable computational efficiency. We propose a direct
reparameterization scheme with better efficiency and use it in
the statistical modeling for aorta in this paper. Our reparameter-
ization function is represented by B-spline coefficients with dif-
feomorphic constraints to guarantee a valid deformation field in
the parameter domain. The computation efficiency is further im-
proved with a differentiable representation of training set shapes
and the use of adjoint method for computing analytical gradients
with respect to optimization variables.

This paper describes how we use our B-spline based repa-
rameterization apporach to build a statistical model from a given
training set of 6 ascending aorta instances. The ascending aorta
is the tube portion of the aortic artery starting from the upper
base of left ventricle to the aortic arch where three branches orig-
inate from.

Figure 1(a) gives the anatomical overview of the location of
the ascending aorta on heart in the anterior view of human body.
The tube chunk shown consists of ascending aorta 1 (number
legend) and aortic arch 2, separating roughly at the purple dotted
section lines. At the lower part of ascending aorta, there are three
sinuses and two outgoing arteries, namely left coronary artery 3
based on top of left coronary sinus 4; right coronary artery 5
based on top of right coronary sinus 6; non-coronary sinus 7
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(a) Ascending aorta (anterior view)

(b) Front view (c) Back view

FIGURE 1: Ascending aorta on heart with scanned data.
Anatomical structure: 1) Ascending aorta (tube portion); 2)Aor-
tic arch; 3) Left coronary artery; 4) Left coronary sinus; 5) Right
coronary artery; 6) Right coronary sinus; 7) Non-coronary sinus.

(without no artery coming out). Figure 1(b)(c) are the front and
back view of the isolated ascending aorta model in triangle mesh,
where the sinuses are arteries are highlighted and numbered in
consistency with Figure 1(a). The cut at the top side of the mesh
corresponds roughly to the section line between ascending aorta
and aortic arch, as denoted by the purple dotted line. The front
view is in general different than the anterior view, and it is chosen
so that the left and right coronary 4 and 6 sinuses face straight at
us at the same time. The non-coronary sinus 7 then is located at
the opposite side, as seen in the back view. The triangle mesh
data of aorta shown in Figure 1(b)(c) are reconstructed from CT
scanned images and are taken as the raw input for the work in
this paper. The six shapes form the training set from which our
statistical model is built.

The remainder of this paper is organized as follow. Section 2
first describes the basics for statistical shape modeling and elabo-
rate mathematically our direct reparametrization scheme for cor-
respondence optimization. Section 3 discusses how the input
raw aorta data is pre-processed; Section 4 showes the optimized

shape correspondence and the SSM with our algorithm; Section
5 gives the conclusion and future work.

2 A direct reparameterization approach to statistical
shape modeling
This section describes the technical procedure of statistical

shape modeling based on the proposed direct reparameteriza-
tion for shape correspondence manipulation. Figure 2 shows the
overall flowchart of the proposed statistical modeling framework,
which consists of: 1) The statistical analysis via the Principal
Component Analysis (PCA) that extracts the shape variational
pattern underlying the training set as SSM, namely several eigen-
modes on top of a mean shape; 2) A novel correspondence ma-
nipulation scheme driven by the direct reparametrization func-
tions.

2.1 Statistical Shape Modeling
Since the PCA takes a matrix as input whose columns are the

shape vectors of physical coordinates representing each training
set instance, it naturally follows that the shape vectors length for
all instances must be identical. This in turn requires that the same
number of points, called the landmarks [24], to represent those
instances. This landmark based representation is also referred to
as the Point Distribution Model (PDM) [25]. Regardless of the
geometric form of the training set, landmarks are constrained to
be on the boundary of a shape instance of the given training set,
and they form a point-based representation that approximates the
original shape [23].

Suppose a training set {Ti} (i = 1,2, ...,nS) comprises nS
shape instances and each is represented by nP landmarks. The
j-th landmark of the i-th instance is x( j)

i = [x( j),y( j),z( j)]Ti ∈ R3.
Owing to the correspondence assumption of landmarks, all the
nS landmarks {x( j)

i } (i = 1,2, ...,nS) with label j should corre-
spond across all instances. The landmark representation of each
instance is usually written into a concatenation of nP landmarks
ordered by labels as a shape vector expression:

xi
.
= [x(1),y(1),z(1),x(2),y(2),z(2), ...,x(nP),y(nP),z(nP)]T

All the nS shape vectors {xi} could be concatenated into a 3nP×
nS shape vector matrix:

XS .
= [x1,x2, ...,xnS ] (1)

The landmark represented shapes are then group-wise
aligned by the Generalized Procrustes Analysis (GPA) [26]; this
is done by performing the pair-wise Procrustes Analysis (PA) it-
eratively between each shape and the mean; the PA is used to
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FIGURE 2: Flowchart of the statistical shape modeling for aorta
training set

bring a shape vector x to a fixed shape vector y by similarity
transformation as below

min
t,s,R
||y− sR(x− t)||2 .

=
nP

∑
j=1

∣∣∣∣∣∣y( j)− sR
(

x( j)− t
)∣∣∣∣∣∣2 (2)

where shape irrelevant factors including translation t, scaling s
and rotation R are removed. This alignment operation is denoted
by an alignment operator.

XA = A (XS) (3)

The training shapes S(u) are continuous, we thus have the con-
tinuous representation of the covariance matrix entries for shape
µ and shape ν

Eµν =
1

(nS−1)A

∫ [
Sµ(u)− S̄(u)

]
·
[
Sν(u)− S̄(u)

]
dA(u) (4)

where S(·) is the vector-valued shape function that defines the
continuous representation of the i-th shape by mapping the pa-
rameter space to the physical space. S̄(u) is the mean shape and
A is the surface area of the mean shape. For numerical imple-
mentation, the continuous covariance matrix is obtained via dis-
cretization through a set of discrete landmarks is

Eµν =
1

(nS−1)nP

nS

∑
i=1

(xi− x̄)µ(xi− x̄)ν . (5)

This could be written simply in a matrix form [21]

E =
1

(nS−1)nP
XT

c Xc (6)

where Xc is defined by

Xc
.
= [xA

1 − x̄,xA
2 − x̄, ...,xA

nS
− x̄] (7)

and the mean shape vector of SSM is

x̄ =
1
nS

nS

∑
i=1

xA
i (8)

The Principal Component Analysis (PCA) [27] is then con-
ducted to extract the principal modes of shape variability via the
eigenvalue decomposition of the covariance matrix

Evm = λmvm (m = 1,2, ...nS−1) (9)

where vm is the m-th eigenvector and λm the corresponding
eigenvalue. The mean shape x̄, modes {vm} and eigenvalues red
λ = {λm} constitutes the SSM.

2.2 Minimum description length based quality evalu-
ation

A quality SSM can be obtained obtained when a good group-
wise correspondence across the training set is achieved. One
approach to achieve good quality SSM is through optimization
where an objective function characterizing the quality of the as-
sociated SSM is optimized. The selection of such quality mea-
sure has been extensively studied [25] [21] when the group-wise
correspondence is to be optimized simultaneously. One current
widely recognized measure is the Description Length (DL), a
concept borrowed from the Minimum Description Length (MDL)
principle in information theory. The MDL principle regards the
statistical model comprising the mean and modes as a message
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that transmits the entire training set, and the DL is the length
of the message. According to the Occam’s razor, the simplest
message is the best, and the SSM with the minimum description
length value is the best and is associated with optimal correspon-
dence.

In our optimization formulation, DL is thus taken as the ob-
jective function. It was originally derived by Davies in [21] and
elaborated in [23]. A simplified version presented in [28] defined
as below is used in our correspondence optimization:

f .
=

nS−1

∑
m=1

Lm (10)

where each mode’s contribution is

Lm =

{
1+ log(λm/λcut) λm ≥ λcut,

λm/λcut otherwise.

The threshold λcut is determined by landmark resolution and
shape scale

λcut =
2 lmin

rmax
, (11)

where lmin is the smallest edge length in the landmark-based rep-
resentation and rmax is the radius of largest circumscribing sphere
over training set shapes.

2.3 Direct reparameterization for correspondence
manipulation

In general, the optimization typically starts with an initial
state of correspondence as shown in Figure 2(b), and the subse-
quent iterations will seek to improve this correspondence until a
minimal DL objective value is reached. The improvement of cor-
respondence entails a correspondence manipulation scheme by
redistributing the landmarks on training set instances. An easy
way to manipulate correspondence by moving landmarks around
is to first establish a one-to-one mapping from the physical do-
main where the training set shapes lie in a parameter domain, and
then redistribute landmarks by moving the landmarks parameter
points in the parameter domain. The search for such mapping
is known as the parameterization. The curve parametrization
is mostly straightforward, and surface mesh parametrization has
seen tremendous literature [29].

With a parametrization S that maps a parameter point u to
a point S(u), the landmark redistribution of landmarks could be
achieved by relocating the landmark parameter u by a reparam-
eterization function D(u) so that the original landmark S(u) is
redistributed to a new position S(D(u)).

2.3.1 Direct reparameterization for curve For the
curve case, taking the hand as an example, Figure 3(a) is the
second row of Figure 2(c), and it shows the reparameterization
function D(u) for the Shape 2. After applying the reparameteri-
zation function to the initial landmarks in Figure 3(b) ( same as
the second row in Figure 2(b)), the landmarks are redistributed to
the state in Figure 3(c) (same as the second row in Figure 2(d)).

Mathematically, D(u) is directly represented by a single B-
spline function with nb coefficients

D(u) =
nb−1

∑
i=0

Bi,p(u)bi, 0≤ u≤ 1; (12)

where Bi,p is the B-spline basis function [30] of degree p associ-
ated with the i-th B-spline coefficient bi recursively defined on a
non-decreasing knot vector Ξ = {ū0, ū1, ..., ūn+p+1}.

0 0.5 1
0

0.2

0.4

0.6

0.8

1
Reparam function shape 7

u

D
(u

)

(a) reparameterization function D(u)Initial landmarks on shape 7

(b) Before redistribution S(u)

Hand shape 7

(c) After redistribution S(D(u))

FIGURE 3: Reparameterization function for a curve and land-
marks before and after reparameterization

2.3.2 Direct reparameterization for surface A
reparameterization of a 3D surface is illustrated in Figure 4
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where cubes and spheres respectively represent sampled points
before and after the reparameterization. Since a 3D surface
S(u) = (x(u),y(u),z(u)) is mapped to a 2D parametric domain,
i.e. u = (u,v), the reparameterization D(u) for 3D surfaces
S(u) have two components in u and v directions, i.e. D(u) =
(Du(u,v,),Dv(u,v)), as shown in Figure 4. These two com-
ponents effectively form a reparameterization vector field (Fig-
ure 4e).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u

v

(a) Sampled parametric points (b) Sampled surface points

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

u

v

(c) D(u) = (Du,Dv)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

b
ij

u

v

(d) Reparameterization by B-splines

FIGURE 4: Reparameterization vector field D(u) and sample re-
distribution on a 3D surface: cubes and spheres respectively rep-
resent points before and after reparameterization.

It’s proposed to use a single B-spline function to directly
represent the reparameterization of u and v component of the
parametric domain, as shown in Figure 4(f) where 8× 8 B-
spline coefficients bi (red circles) are used to represent the repa-
rameterization field D(u). In general, the reparameterization
D(u) = (Du(u,v),Dv(u,v)) in the square planar parameter do-

main is defined as

Du(u,v) =
nb1−1

∑
i=0

nb2−1

∑
j=0

Bi,p(u)B j,q(v)bu
i, j

Dv(u,v) =
nb1−1

∑
i=0

nb2−1

∑
j=0

Bi,p(u)B j,q(v)bv
i, j

0≤ u,v≤ 1;

(13)

where Bi,p and B j,q are the B-spline basis functions (??) of de-
gree p and q associated with the (i, j)-th B-spline coefficient 2-
tuple bi, j = (bu

i, j,b
v
i, j); the coefficient number along the u- and

v-direction are nb1 and nb2 respectively. They are respectively
defined on two sets of non-decreasing knot vector Ξ1 and Ξ2.

2.4 Optimization formulation
With the above B-spline representation of reparameteriza-

tion functions D(u), we thus have the following optimization
formulation for using B-spline based reparameterization for ma-
nipulating shape correspondence:

min
b

f (b) = ∑
λi≥λcut

[
1+ log

λk(b)
λcut

]
+ ∑

λk<λcut

λk(b)
λcut

(14a)

s.t.
[
CT (b)C(b)

]
vk(b) = λi(b)vk(b) (14b)

vT
k (b)vk(b) = 1, k = 1, ...,nS (14c)

g(b)< 0 (14d)

In this formulation, b is the set of optimization variables and rep-
resents the collection of interior B-spline coefficient tuples b for
ns− 1 shapes, where one shape from the training set is selected
as a reference. The objective function f (b) is the simplified de-
scription length, which is a function of eigenvalues computed
from (14b) and (14c). The matrix C is related to the covariance
matrix E by E = CT C with

C =
Xc√

(nS−1)nP
.

The constraint (14d) represents the diffeomorphic conditions for
curves and surfaces, each of which is a function of optimiza-
tion variables b. The diffeomorphic conditions guarantees the
bijectivity after applying reparameterization function for corre-
spondence manipulation; it’s straight forward for curve case, and
for the surfaces it’s fulfilled by enforcing the Jacobian positivity
constraints.
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3 Training set data preprocessing
3.1 Mesh preprocessing

The raw input ascending aorta of 6 shape instances are
shown in Figure 5 with distinct colors. They all contain the
ascending aorta tube portion as the major part, but vary in the
detailed features for sinuses and particularly for coronary arter-
ies. Since the outgoing arteries geometries differ greatly from
one another, they will be excluded from major tube part and we
are focusing on the sinus part and the tube portion. In order for
the data to be processable by our proposed algorithm, the raw
training set must undergo a series of preprocessing procedures
that resolve issues such as incomplete data, noise and smooth-
ness etc.

(a) Shape 1: 34.5K ver-
tices, 68.7K faces

(b) Shape 2: 23.0K ver-
tices, 45.8K faces

(c) Shape 3: 25.3K ver-
tices, 50.4K faces

(d) Shape 4: 25.1K ver-
tices, 49.7K faces

(e) Shape 5: 21.1K ver-
tices, 41.9K faces

(f) Shape 6: 21.3K ver-
tices, 42.0K faces

FIGURE 5: Raw triangle meshes of aorta data in front view

3.1.1 Hole filling Incomplete data is a common issue
from reconstructed mesh from CT scans. This usually comes in
the form of holes, which can be grouped into two types depend-
ing on the requirements of hole filling: 1) direct filling; 2) hole
flattening and filling. Type 1 is usually minor data loss and has
mild curvature variation in the vincinity; Type 2 is usually asso-
ciated with a cut-off artery stemming from the sinus; in this case,
direct filling of hole cannot recover the geometry at the cut-off
location around the thin artery tube. The little influence of the

(a) Mesh before filling (68.7K
faces)

(b) Mesh after filling (66.8K
faces)

FIGURE 6: Mesh hole filling and hole types. Type 1: direct
filling (hole A); type 2: flattening and filling(hole B and C)

artery tube also make it reasonable to remove the artery feature
and seal the flattened hole off before doing any direct hole filling.

(a) Hole A: before filling (b) After filling

FIGURE 7: Direct hole filling for type 1 (hole A)

(a) The dangling feature to
remove for hole flattening

(b) Flattened holes (c) Holes filled

FIGURE 8: Flattening and filling for type 2 (hole B)

Taking Shape 1 as an example as seen in Figure 6(a), hole
A located on the right coronary sinus belongs to Type 1, which
can be directly filled by mesh completion algorithm as shown
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in Figure 7. The other two holes B (left coronary artery) and C
(right coronary artery) are of Type 2, where a feature removing
step is necessary before mesh completion algorithm is applied.
Figure 8(a) shows the feature portion around hole B expected to
be eliminated, and a flattened hole in Figure 8(b) follows, and in
the end the mesh completion based on curvature constraint would
result in the filled hole show in Figure 8(c). Similarly hole C
could be flattened and filled in the same way, and the aorta mesh
after the hole filling procedure is shown in Figure 6(b).

3.1.2 End trimming The proposed algorithm currently
can only handle training set geometry topologically equivalent
to a disc. The geometry in Figure 6(b) after the hole filling is
complete satisfies such criterion but wasted a rather large area
at the top end since the planar cut between ascending portion
and aortic arch carries no variation of the aortic tube surface.
Therefore it is advisable to trim the top end to an open end and
map the remaining cylindrical part onto a square domain. The
top end trimming occurs as shown in Figure 9(c) compared to
the original state in Figure 9(a).

(a) Bottom and top ends be-
fore trimming (66.8K faces)

(b) Mesh after trim-
ming (44.7K faces)

(c) Trimming at top end (d) Trimming at bottom end

FIGURE 9: Trim mesh at top and bottom

For the bottom part, the factor of noise and data separation
all make the bottom portion unreliable to faithfully represent the
lower part of the ascending aorta. The irregular mesh bound-

aries observed for Shape 1, 2, 4 and 6 in Figure 5(a)(b)(d)(f)
have confirmed this need for bottom end trimming. Addition-
ally, when the bottom portion lack data to be trimmed as is the
case for Shape 3 in Figure 5(c), then mesh boundary must first be
extended to create enough data to be trimmed based on the bor-
dering mesh’s curvature information. The mesh after bottom end
trimming would look like Figure 9(d) where the mesh boundary
becomes much more regular and smooth. After the top and bot-
tom trimming, the aorta mesh becomes the one in Figure 9(b)
and the number of faces drops from 66.8K to 44.7K.

It’s also desirable that the manual trimming position of all
the 6 shapes are at approximately the corresponding location
across the entire training set, considering the fact that the cor-
respondence of the boundaries are assumed to be fixed and only
the interior correspondence is optimized in our approach.

(a) Mesh after trimmed
(22.7K vertices, 44.7K
faces)

(b) Mesh after smooth-
ing (18.9K vertices,
37.4K faces)

(c) Mesh after deci-
mation (5.1K vertices,
10.1K faces)

FIGURE 10: Mesh smoothing and decimation

3.1.3 Smoothing and decimation The illustrative
data obtained till trimming is shown in Figure 10(a). To fur-
ther reduce the noise factor, we apply a smoothing filter on the
mesh based on local mesh curvature to obtain the smoothed mesh
in Figure 10(b) where the number of faces drops from 44.7K to
37.4K. For a more compact representation, the smoothed mesh
went on to be decimated from 37.3K to 10.1K.

During the entire mesh pre-processing procedures consist-
ing of hole filling, end trimming, smoothing and decimation,
the number of vertices and triangle faces are generally chang-
ing. Table 1 keeps track of this information as each procedure
progresses.
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TABLE 1: Vertex and triangle numbers during SSM pre-
processing.

Vertex#
(Face#) Raw Filled Trimmed Smoothed Decimated

Shape 1
34569

(68717)
33531

(66838)
22774

(44734)
18927

(37405)
5116

(10099)

Shape 2
23049

(45828)
20739

(41300)
16814

(32871)
13994

(27571)
5162

(10199)

Shape 3
25345

(50441)
25939

(51766)
20945

(41002)
17324

(34146)
5185

(10243)

Shape 4
25102

(49714)
22861

(45558)
18823

(36745)
15547

(30591)
5117

(10094)

Shape 5
21097

(41940)
21431

(42764)
17882

(30540)
14402

(28409)
5179

(10227)

Shape 6
21271

(42047)
20903

(41663)
17242

(33651)
14436

(28469)
5188

(10248)

3.2 Training set B-spline fitting

(a) Before alignment (b) After alignment

FIGURE 11: 6 meshes before and after one-time alignment with
ICP algorithm

3.2.1 One-time mesh alignment Since in the actual
correspondence optimization, the alignment process is discarded
for additional speed gain, and this requires that the shapes should
already be aligned before they are fed into the optimization algo-
rithm. We choose to perform a one-time alignment of the tri-
angle meshes. The number of vertices of all aorta meshes after
the mesh preprocessing is not identical across the trainings set
as suggested by the last column in Table 1, the Iterative Closest
Point (ICP) algorithm is employed to align these meshes. Before
alignment, the 6 triangle meshes are superimposed and shown in
Figure 11(a). The ICP aligned meshes of training set are shown

in Figure 11(b), where the 6 meshes are brought to a much better
alignment state.

(a) Left view (b) Front view

FIGURE 12: Generatrix determination. Number legend: 4). Left
coronary sinus; 6). Right coronary sinus; 7) Non-coronary sinus

3.2.2 Generatrix determination Recall that our
SSM algorithm requires a square domain, whereas the current
triangle mesh is topologically equivalent to a cylinder. One sim-
ple way to obtain this is to cut the mesh along a line and unfold
and map it onto the square domain, and this cutting line is just
the “generatrix” to be determined. Since it’s better to leave the
area between the left and right coronary sinus, namely 4 and 6,
intact from whatever influence brought by the cutting line. The
cutting line is placed on the back side between the right coronary
sinus 6 and the non-coronary sinus 7 as shown in Figure 12(a).

Taking Shape 1 as an example, the first step is to manually
specify vertex A, that’s supposed to lie at a valley point between
6 and 7. Then the Dijsktra’s algorithm is utlized to find a vertex at
the bottom and top boundaries that has the shortest geodesic dis-
tance along mesh edges to A. Comparison within boundary ver-
tices at bottom and top side gives vertex B and C. Connecting A
with both B and C lead to the generatrix line BAC. Figure 12(b)
shows where the generatrix line is located in the front view. Re-
peating these steps give the generatrix lines for the remaining 5
shapes as displayed in Figure 13.

3.2.3 Mesh parametrization After the generatrix is
available, it’s safe to cut along it and the generatrix edge line on
mesh would serve as the image mapped to two opposite sides of
the square parameter domain. The generatrix and bottom and top
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(a) Shape 1 (b) Shape 2 (c) Shape 3

(d) Shape 4 (e) Shape 5 (f) Shape 6

FIGURE 13: Generatrix on all the 6 shapes in left view

boundaries are highlighted in green in Figure 14(a). The two ver-
tices of the generatrix at bottom and top would serve as the four
corner vertices of the square domain as shown in Figure 14(b).

Suppose each raw shape instance TDi is represented by a tri-
angulated mesh consisting of vertex list Vp = {p j}( j = 1, ...,nv)
with an associated triangle list T = {Tk}(k = 1, ...,nt), where
the j-th vertex is p j = [x j,y j,z j], and the k-th triangle is of ver-
tex index set Tk = [τk1,τk2,τk3], and nv and nt are the number
of vertices and triangles respectively. The mesh parametrization
procedure contains two steps, namely 1). the initial parametriza-
tion; 2) parametrization improvement by minimizing distortion.

Initial parametrization Mesh parametrization seeks to find a
mapping of vertices between physical domain and the parame-
ter domain namely VU = {u j} = {u j,v j}. If a square param-
eter domain is chosen, the nb boundary vertices parameters set
Ub = (une+1, ...,unv) on the four sides could be either manually
determined by know correspondence, or by the correspondence
manipulation for 2D case, where ne = nv− nb is the number of
interior vertices. The standard approach to obtain a fold-over free
vertices parameter with attached triangulation is to adopt the sim-
ple idea that the edges of the triangle mesh are spring connected
at vertices [29]. In this spring model, the minimum spring energy

state is reached when each interior parameter point u j is an affine
combination of its neighbors, i.e.

u j = ∑
k∈N j

w jkuk

s.t. ∑w jk = 1
(15)

where w jk is the normalized weight coefficients.of the neigh-
bor set N j for the j-th parameter point. Separating interior and
boundary vertices gives

u j− ∑
k∈N j ,k≤ne

w jkuk = ∑
k∈N j ,k>ne

w jkuk (16)

this reduces to solving two linear systems

AU = Ū and AV = V̄ (17)

where U and V are the interior parameters to solve and Ū and Ū
are the boundary parameter conditions. ne×ne weight coefficient
matrix A = (ai j)i, j=1,...,ne has elements

ai j =


1 if j = k
−w jk if k ∈ N j

0 otherwise
(18)

Parameterization distortion minimization There exist sev-
eral options for assigning weight coefficients including con-
stant (mesh geometry irrelevant) [31], and other geometry-aware
barycentric coordinates such as Wachspress, Discrete harmonic
and Mean value coordinates. These weighting options all lead to
a valid parametrization but in general the mesh distortion intro-
duced is rather high. Therefore, a mesh distortion reduction must
follow the initial parametrization. The simple method we employ
comes from [32] that minimizes a quantity called “stretch” which
effectively measures the mesh distortion.

Consider a mesh triangle T P = (p1,p2,p3) in physical do-
main and its corresponding triangle TU = (u1,u2,u3). This de-
fines a one-to-one mapping from triangles in parameter domain
to those in physical domain, namely, S : TU → T P. If the maxi-
mal and minimal eigenvalues of the metric tensor induced by S
is denoted by Γ(T ) and γ(T ), the triangle stretch in the k-th trian-
gle of the mapping or parametrization S could be characterized
by

σ(Tk) =

√
Γ2(Tk)+ γ2(Tk)

2
(19)
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Then the stretch of each vertex is defined by

σ(u j) =

√
∑A(Tk)σ2(Uk)

∑A(Tk)
(20)

where A(T ) is the are of triangle T and the sums taken over all
triangles Tk that have p j as a vertex. Then the weights in (18) for
the (h+1)-th iteration are updated according to the vertex stretch
value at the current h-th iteration by

wh+1
jk =

wh
jk

σ(uh
j)

(21)

The stopping criterion is based on the global stretch metric de-
fined by

Eh =

√
∑

nt
k=1 Akσ2(T h

k )

∑
nt
k=1 Ak

(22)

Iteration stops if Eh+1 > Eh, meaning there is no room to relax
the stretch and distortion. Finally {uh+1

j } will output as the opti-
mized and the mesh parametrization S is established. This ap-
proach could significantly reduce the mesh distortion introduced
by parametrization.

(a) Physical domain (b) Parameter domain

FIGURE 14: Mesh parametrization

3.2.4 Regular sampling With an established
parametrization mapping the parameter domain to the physical
domain, it’s time to generate a regular grid by sampling at a

regularly spaced point in the parameter domain as shown in
Figure 15(a).

Specifically for each shape, nM sampling parameters
{ml}(l = 1, ...,nM) will be regularly placed within the param-
eter domain [0,1]× [0,1] where each sampling parameter point
ml = (ul ,vl) results in a sampled point ql on the physical mesh
with the previously computed parametrization S by barycentric
interpolation

ql = β1,lp1 +β2,lp2 +β3,lp3 (23)

where the barycentric coordinates are determined by area frac-
tions of the three sub-triangles formed by connected ml with u1,
u2 and u3 of the triangle in parameter domain by

β1,l =
A(ml ,u2,u3)

A(u1,u2,u3

β2,l =
A(u1,ml ,u3)

A(u1,u2,u3

β3,l =
A(u1,u3,ml)

A(u1,u2,u3

s.t. β1 +β2 +β3 = 1

(24)

Here a regularly spaced grid of resolution 51× 51 are sam-
pled as seen in the zoomed-in local view Figure 15(b). The sam-
pling involves interpolation of barycentric coordinates and the
sampled grid in the front and left view in Figure 15(c) and (d).
The yellow and blue spheres are the bottom and top end vertices
of the generatrix line.

3.2.5 B-spline fitting Base on the coordinates of the
regular grid of 50×50 data points just obtained, it’s time to use
the global approximation technique described in [30] and get a
well-fitted B-spline surface as shown in Figure 16(a)(b) in the
front and left view respectively. The B-spline resolution is set
to be 30× 30 and the degree along u- and v-direction is both
quadratic. The B-spline is re-visualized with knot lines shown in
Figure 16(c)(d). The generatrix line can be also shown in Fig-
ure 16(d). And the B-spline training set of 6 instances are shown
in Figure 17.

4 SSM results
The raw training set in triangle meshes have been processed

into differentiable B-spline representation. The reparameteriza-
tion function is governed by a by quadratic B-spline of coeffi-
cients resolution of 12×12, and reference shape is chosen to be
Shape 1. The optimization is done by the Sequential Quadratic
Programming (SQP) optimizer, and the convergence criterion is
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(a) Regular sampling grid in parame-
ter domain

(b) Zoom-in view

(c) Sample grid in physical do-
main (left view)

(d) Front view

FIGURE 15: Regular grid sampling

the relative change in DL objective function at the k-th iteration
drops below a threshold ε , namely

∣∣∣DL(k)−DL(k−1)

DL(0)

∣∣∣ < ε , and here

ε = 10−6. The optimization took 439 iterations and 2293.9 sec-
onds to converge, and the DL has dropped from 98.7 to 92.8.

The history of aggregated constraint for all the non-reference
Shapes 2,3,4,5,6 is shown in Figure 19(b). It’s seen that at the
ending iteration, some of the constraints are active, and a previ-
ously violated constraint will be rectified to valid to ensure the
diffeomorphism and prevent self-intersection of reparameteriza-
tion function.

The deformed grid under the optimized reparameterization
function for Shape 2 D2(u) is shown in Figure 19(a) and it’s
clearly seen that the interior B-spline control coefficients while
the boundary B-spline coefficients are fixed. Figure 19(b) dis-
plays the corresponding Jacobian field.

The first two modes are shown in Figure 20 where β is
the parameter value along mode directions and λ is the varia-
tion along mode direction. The parameter values is chosen at
β = −3,0,+3 since the [−3,+3] range would cover 97.7% of
the possible shape variation along a particular mode. It’s seen

(a) Surface (front view) (b) Surface (left view)

(c) With knot lines (front view) (d) With knot lines (left view)

FIGURE 16: B-spline fitting

that after the correspondence optimization, the first two modes
together account for 78.3% of the total variation of all possible
variation patterns. Mode 1 and 2 have characterized the changing
of diameter of the aorta tube and also the size changing at the left
coronary sinus.

Lastly, we use the three statistical model evaluation mea-
sures [33], namely generalization, specificity and compactness
error to analyze the effectiveness of our proposed algorithm.

The generalization error measure the ability of the SSM to
extrapolate any valid instance that is not seen in training set but
belongs to the shape class. The error is calculated by the leave-
one-out test, where each instance is left out and the remaining
nS−1 shapes are used to generate statistical model and the left-
out instance is reconstructed by projecting onto the eigenmode
directions, and finally the error is identified as the difference be-
tween the left-out instance and its reconstruction. The specificity
error measures the ability of SSM to only represent instance that
belongs to the shape class. The computation goes as follows, a
large number of randomly generated instances are obtained by
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(a) Shape 1 (b) Shape 2 (c) Shape 3

(d) Shape 4 (e) Shape 5 (f) Shape 6

FIGURE 17: Training set B-splines

SSM and the error is identified as difference between the random
instance and its closest training set instance. The compactness
error is just the sum of eigenvalues of variations that measure
how compact the SSM is in the shape space.

It’s seen from Figure 21 that these three errors have all de-
creased from initial correspondence to the optimized correspon-
dence.

5 Conclusion
In this paper, we have built the Statistical Shape Model out

of a training data set of six ascending aorta. The shape instances
are preprocessed and fitted in B-spline to perform as the actual
input training set instances. The search for a reasonably high-
quality SSM is reduced to an correspondence optimization prob-
lem, and we propose a novel and efficient scheme for manipulat-
ing group-wise shape correspondence, i.e. the direct reparame-
terization driven by B-spline coefficients.

Although our proposed correspondence optimization algo-
rithm currently concentrates on the shape of disk topology, the
raw shapes are carefully preprocessed and the interested areas
such as the coronary sinuses are kept to form a geometry with
cylindrical topology. The generatrix is introduced to transform
cylindrical topology shapes to disk topology shapes as valid in-
put into optimization algorithm.
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FIGURE 18: Optimization history

Reliable statistical model evaluation measures of general-
ization ability, specificity and compactness have been studied
to show that correspondence is improved and simultaneously an
optimized SSM has been achieved. The SSM then can be uti-
lized for a good variety of downstream medical applications such
patient-specific modeling and diagnosis where alternatives are ei-
ther expensive or potentially hazardous.

Future work include acquiring more aorta shapes and form
a larger shape population so as to gain an SSM that more reli-
ably characterizes the underlying shape variation pattern of the
aortic geometries. The resulting SSM will then be used to con-
struct patient-specific computational models for studying aortic
disease.
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FIGURE 19: Deformed grid under optimized reparametrization
function D2(u)
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