
Ontological Assembly Representation of

a Reduction Gearbox by use of Protégé OWL
Kang	
 Li	

In the broad field of Product Development, Product Lifecycle Management (PLM) is of great
importance to the design and manufacturing part throughout the whole process. The development of
ontological assembly representation was initiated from several considerations concerning assembly
representation for PLM. Ontological representation, due to its inherent advantages, can help achieve
high interoperability level that enables efficient implementation of PLM and identify a common data
structure to allow data exchange between platforms. There are several kinds of software that is able to
perform ontology-based modeling and analysis, and Protégé is a commonly used and powerful tool in
this area. To make this idea more clear, this report will choose a typical assembly case, namely a
reduction gearbox, build the corresponding ontology and explore the ontology assembly model by
using related plug-ins.

1. Introduction

1.1 Ontology

This project presupposes prior knowledge regarding the term “ontology”; this word was generally used
in a philosophical context in old times, but in recently years it has become a sub-discipline under
Artificial Intelligence and Information science. We might wonder: why do we develop Ontology in the
first place? Some of the reasons are:

• To share common understanding of information structure among people or software agents

• To enable reuse of domain knowledge

• To make domain assumptions explicit

• To separate domain knowledge from the operational knowledge

• To analyze domain knowledge

Sharing common understanding of information structure among people or software agents is one
of the more common goals in developing ontologies. Enabling reuse of domain knowledge was
one of the driving forces behind recent surge in ontology research. Making explicit domain
assumptions underlying an implementation makes it possible to change these assumptions easily if
our knowledge about the domain changes. Separating the domain knowledge from the operational
knowledge is another common use of ontologies. We can describe a task of configuring a product
from its components according to a required specification and implement a program that does this
configuration independent of the products and components themselves. Analyzing domain
knowledge is possible once a declarative specification of the terms is available. Formal analysis of

terms is extremely valuable when both attempting to reuse existing ontologies and extending them.
Often an ontology of the domain is not a goal in itself. Developing an ontology is akin to defining
a set of data and their structure for other programs to use.

Having a basic understanding on the usefulness of ontology, we may need to clearly and formally
define ontology . The Artificial-Intelligence literature contains many definitions of an ontology;
many of these contradict one another. For the purposes of this report an ontology is a formal
explicit description of concepts in a domain of discourse (classes, sometimes called concepts),
properties of each concept describing various features and attributes of the concept, and
restrictions on properties (sometimes called role restrictions). An ontology together with a set of
individuals of classes constitutes a knowledge base.

1.2 Protégé and Protégé-OWL

Protégé is a free, open-source platform that provides a growing user community with a suite of tools to
construct domain models and knowledge-based applications with ontologies. At its core, Protégé
implements a rich set of knowledge-modeling structures and actions that support the creation,
visualization, and manipulation of ontologies in various representation formats. Protégé can be
customized to provide domain-friendly support for creating knowledge models and entering data.
Further, Protégé can be extended by way of a plug-in architecture and a Java-based Application
Programming Interface (API) for building knowledge-based tools and applications.

An ontology describes the concepts and relationships that are important in a particular domain,
providing a vocabulary for that domain as well as a computerized specification of the meaning of terms
used in the vocabulary. Ontologies range from taxonomies and classifications, database schemas, to
fully axiomatized theories. In recent years, ontologies have been adopted in many business and
scientific communities as a way to share, reuse and process domain knowledge. Ontologies are now
central to many applications such as scientific knowledge portals, information management and
integration systems, electronic commerce, and semantic web services.

The Protégé platform supports two main ways of modeling ontologies: Protégé-Frames and
Protégé-OWL editors. The Protégé-Frames editor enables users to build and populate ontologies that
are frame-based, in accordance with the Open Knowledge Base Connectivity protocol (OKBC). In this
model, an ontology consists of a set of classes organized in a subsumption hierarchy to represent a
domain's salient concepts, a set of slots associated to classes to describe their properties and
relationships, and a set of instances of those classes - individual exemplars of the concepts that hold
specific values for their properties. The Protégé-OWL editor enables users to build ontologies for the
Semantic Web, in particular in the W3C's Web Ontology Language (OWL). "An OWL ontology may
include descriptions of classes, properties and their instances. Given such an ontology, the OWL formal
semantics specifies how to derive its logical consequences, i.e. facts not literally present in the
ontology, but entailed by the semantics. These entailments may be based on a single document or
multiple distributed documents that have been combined using defined OWL mechanism.
Protégé-OWL can be regarded as an extension of Protégé that supports Web Ontology Language.

OWL ontologies may be categorised into three species or sub-languages: OWL-Lite, OWL-DL and
OWL-Full. A defining feature of each sub-language is its expressiveness. OWL-Lite is the least

expressive sub-langauge. OWL-Full is the most expressive sub-language. The expressiveness of
OWL-DL falls between that of OWL-Lite and OWL-Full. OWL-DL may be considered as an extension
of OWL-Lite and OWL-Full an extension of OWL-DL. OWL-DL is much more expressive than
OWL-Lite and is based on Description Logics. Description Logics are a decidable fragment of First
Order Logic and are therefore amenable to automated reasoning. It is therefore possible to
automatically compute the classification hierarchy and check for inconsistencies in an ontology that
conforms to OWL-DL. This report will employ OWL-DL to implement the specific assembly, and use
the lastest versatile version of Protégé 3.4 Beta to experience with the features and characteristics of
ontological assembly model.

OWL ontologies have three components: Individuals, Properties and Classes, Figure 1 is a screen shot
of an OWL ontology. We will elaborate on how to work with it later.

Figure 1 Protégé-OWL user interface window

2 Assembly Description

The Reduction Gearbox System is an electromechanical component usually used to change the
rotational speed or the torque of a shaft. In this specific case, our goal is to represent a scenario of an
assembly representation to outline assembly complexity but at the same time not to complicate the
example itself; with this in mind, some structure and relationship between different parts have been
simplified or modified in a reasonable way.

2.1 Components in Reduction Gearbox System

The system consists of 2 subassemblies with 14 parts. The solid model of the reduction gearbox system
is built in Pro/Engineer Wildfire 4.0 as is shown Figure 2.

Figure 2 Reduction Gearbox System

The Reduction Gearbox System consists of several components. Figure 3 shows the exploded view of
the above solid model. The list of all the components of the gear box system is given in Table 1.

Figure 3 Exploded view of the Reduction Gearbox System

ID Name Quantity Functional Description

1 Lower Housing 1 Cover, support and protect shafts and gears

2 Upper Housing 1 Cover, support and protect shafts and gears

3 Input Shaft 1 Input and transmit power

4 Input Bearing 2 Support the rotation of input shaft

5 Output Shaft 1 Output power

6 Output Gear 1 Transmit power

7 Output Bearing 2 Support the rotation of output shaft

8 Output Key 1 Transmit power from output gear to output shaft

9 Screw 4 Connect lower and upper housing

Table 1 Components of the Reduction Gearbox System

2.2 Assembly Hierarchy

Figure 4 Reduction Gearbox System Structure

It’s necessary to define assembly hierarchy for the reduction gearbox system, which is composed of
three parts and two sub-assemblies as in Figure 4. The parts include lower housing, upper housing and
four screws. The two sub-assemblies include: (1) the input end assembly comprising a gear shaft and
two bearings; (2) the output end assembly comprising a shaft, a gear, two bearings and a key.

Figure 5 Reduction Gearbox Hierarchy

The hierarchical relationships between the components of the gearbox system can be represented as an
instance diagram as shown in Figure 5. The names take the form of “instance name: class name”, which
will make it easier to implement this particular assembly ontology in subsequent operations within
Protégé-OWL environment. The root node is the entire assembly; the interior nodes are sub-assemblies,
and the leaf nodes are component parts.

Figure 6 Connection between parts

ReductionGearboxAsm:
Assembly

LowerHousing:
Part

InputAxialAsm:
Assembly

Screws:
Part

UpperHousing:
Part

OutputAxialAsm:
Assembly

InputBearing1:
Part

InputBearing2:
Part

InputShaft:
Part

OutputBearing1:
Part

OutputBearing2:
Part

OutputShaft:
Part

OutputGear:
Part

OutputKey:
Part

The connections between parts are presented in Figure 6. The naming conventions are related to the
types of possible connections (fc: fixed connection, mc: movable connection). These connections
between parts are represented in the model through instances of the class ArtifactAssociation.

2.3 Case Implementation

In this section, the use case implementation is presented. For explanation of the Reduction Gearbox
System example, the structure of the ontology will be followed and every class will be presented twice
with its Individuals and Properties. Accordingly, this section is divided into two main parts: Input
Individuals and Output Individuals.

2.3.1 Asserted Individuals and Properties

Before we actually build the ontology in Protégé 3.4 Beta OWL package, it is advisable to work out the
frame of the whole model, namely, which classes, subclasses, properties and individuals we wish to put
into the final OWL-ontology. Name of classes will be in bold type, properties in shadow and
individuals in italic.

2.3.1.1 Asserted Artifact Individuals and properties

The class Artifact has three subclasses: Assembly, Meaningless_Artifact, and Part. The reasoning
capabilities of the model allow us to create all the instances of Assembly directly as Artifacts and then
infer them as individuals of Assembly. This is possible defining an Assembly as an Artifact composed
by at least two subassemblies (through restriction on the property artifactHasPart_direct)

 Asserted Properties
Artifact Individuals artifactHasPart_direct partofArtifact_direct

Input_Axial_Assembly

Input_Bearing_1
Input_Bearing_2

Input_Shaft
Input_Axial_Assembly*

Reduction_Gearbox_Assembly

Output_Axial_Assembly

Output_Bearing_1
Output_Bearing_2

Output_Shaft
Output_Gear
Output_Key

Reduction_Gearbox_Assembly

Reduction_Gearbox_Assembly

Input_Axial_Assembly
Output_Axial_Assembly

Lower_Housing
Upper_Housing

Screw_1
Screw_2
Screw_3
Screw_4

--

Table 2 Artifact: asserted individuals and properties

The input individuals of the class Artifact are presented in Table 2. In the first column of the table are

the individuals of artifact. In other columns, are the individuals of the related classes linked through the
properties that names these columns. From the table, notice that the Input_Axial_Assembly is
incorrectly defined i.e., composed by itself (*). This error is purposely introduced for testing the
reasoning capabilities.

2.3.1.2 Asserted Assembly Individuals and properties

It is possible to assert all individuals of the class Assembly as individuals of the class Artifact and let
the reasoner (in this case the Racer) reclassify the individuals. At this point the class Assembly is
empty.

2.3.1.3 Asserted Meaningless_Artifact Individuals and properties

This class is created for managing the impossibility of blocking the creation of a self-reference in the
current version of Protégé-OWL. In the current model it is possible to define an individual of Assembly
composed by itself. Presently, there is no direct solution and hence the class “Meaningless_Artifact”
is created. For demonstration purposes the wrong definition of Input_Axial_Assembly the in introduced
for testing the capability of the ontology to identify this kind of error.

2.3.1.4 Asserted Part Individuals and Properties

Although the class Part in a subclass of the classs Artfact, it is impossible to assert that individuals of
the different parts as individuals of Artifact and later infer them as individuals of Part as with the case
of the individuals of Assembly. This is due to the limitation with OWL: we cannot define a class as a
class without a property. An individual of Part is an Artifact that is not composed by any other Parts
but for a reasoner an Artifact without a property (artifactHasPart_direct) is not an individual of Part
but only an individual not yet completely defined. For this reason all the parts are created direcdtly in
the class Part. The asserted individuals and properties for the class Part are shown in Table 3.

 Asserted Properties
Part Individuals partOfArtifact_direct artifatHasFeature part2ArtifactAssociation

Input_Bearing-1 Input_axial_Assembly
Input_Inner_Race_1 mc_2
Input_Outer_Race_1 fc_2

Input_Bearing-2 Input_axial_Assembly
Input-Inner_Race-2 mc_2
Input-Outer_Race-2 fc_3

Input_Shaft

Input_axial_Assembly

Input_Bearing_Seat_1 mc_2
Input_Bearing_Seat_2 mc_2

Input_Gear_Teeth mc_1

Output_Bearing-1 Output_axial_Assembly
Output_Inner_Race_1 mc_3
Output_Outer_Race_1 fc_4

Output_Bearing-2 Output_axial_Assembly
Output_Inner_Race_2 mc_3
Output_Outer_Race_2 fc_5

Output_Shaft

Output_axial_Assembly

Output_Bearing_Seat_1 mc_3
Output_Bearing_Seat_2 mc_3

Output_Key_Side_1 fc_6

Output_Gear Output_axial_Assembly
Output_Key_Side_2 fc_7
Output_Gear_Teeth mc_1

Output_Key Output_axial_Assembly
Output_Shaft_Side fc_6
Output_Gear_Side fc_7

Lower_Housing

Redcution_Gearbox_Assembly

Input_Bearing_Seat_3 fc_2
Input_Bearing_Seat_4 fc_3

Output_Bearing_Seat_3 fc_4
Output_Bearing_Seat_4 fc_5

Threaded_Hole_1 fc_1
Threaded_Hole_2 fc_1
Threaded_Hole_3 fc_1
Threaded_Hole_4 fc_1

Upper_Housing

Redcution_Gearbox_Assembly

Thru_Hole_1 fc_1
Thru_Hole_2 fc_1
Thru_Hole_3 fc_1
Thru_Hole_4 fc_1

Screw_1 Redcution_Gearbox_Assembly Thread_1 fc_1
Screw_2 Redcution_Gearbox_Assembly Thread_2 fc_1
Screw_3 Redcution_Gearbox_Assembly Thread_3 fc_1
Screw_4 Redcution_Gearbox_Assembly Thread_4 fc_1

Table 3 Asserted individuals and properties

2.3.1.5 Asserted Feature Individuals and Properties

The class Feature has the same level of the class Artifact and stores the individuals that represent the
features of the single parts. Table 4 presents the individuals of the class Feature that participate in the
creation of the assemblies through the different types of connections. AFA stands for Assembly Feature
Association and AFAR Assembly Feature Association Representation.

 Asserted Feature Individuals & Properties
Feature featureOfArtifact feature2AFA feature2AFAR

Input_Inner_Race_1
Input_Bearing-1

AFA_mc_2 AFAR_mc_2
Input_Outer_Race_1 AFA_fc_2 AFAR_fc_2
Input_Inner_Race-2

Input_Bearing-2
AFA_mc_2 AFAR_mc_2

Input_Outer_Race-2 AFA_fc_3 AFAR_fc_3
Input_Bearing_Seat_1

Input_Shaft
AFA_mc_2 AFAR_mc_2

Input_Bearing_Seat_2 AFA_mc_2 AFAR_mc_2
Input_Gear_Teeth AFA_mc_1 AFAR_mc_1

Output_Inner_Race_1
Output_Bearing-1

AFA_mc_3 AFAR_mc_3
Output_Outer_Race_1 AFA_fc_4 AFAR_fc_4
Output_Inner_Race_2

Output_Bearing-2
AFA_mc_3 AFAR_mc_3

Output_Outer_Race_2 AFA_fc_5 AFAR_fc_5
Output_Bearing_Seat_1

Output_Shaft
AFA_mc_3 AFAR_mc_3

Output_Bearing_Seat_2 AFA_mc_3 AFAR_mc_3
Output_Key_Side_1 AFA_fc_6 AFAR_fc_6
Output_Key_Side_2

Output_Gear
AFA_fc_7 AFAR_fc_7

Output_Gear_Teeth AFA_mc_1 AFAR_mc_1

Output_Shaft_Side
Output_Key

AFA_fc_6 AFAR_fc_6
Output_Gear_Side AFA_fc_7 AFAR_fc_7

Input_Bearing_Seat_3

Lower_Housing

AFA_fc_2 AFAR_fc_2
Input_Bearing_Seat_4 AFA_fc_3 AFAR_fc_3

Output_Bearing_Seat_3 AFA_fc_4 AFAR_fc_4
Output_Bearing_Seat_4 AFA_fc_5 AFAR_fc_5

Threaded_Hole_1 AFA_fc_1 AFAR_fc_1
Threaded_Hole_2 AFA_fc_1 AFAR_fc_1
Threaded_Hole_3 AFA_fc_1 AFAR_fc_1
Threaded_Hole_4 AFA_fc_1 AFAR_fc_1

Thru_Hole_1

Upper_Housing

AFA_fc_1 AFAR_fc_1
Thru_Hole_2 AFA_fc_1 AFAR_fc_1
Thru_Hole_3 AFA_fc_1 AFAR_fc_1
Thru_Hole_4 AFA_fc_1 AFAR_fc_1

Thread_1 Screw_1
Screw_2
Screw_3
Screw_4

AFA_fc_1 AFAR_fc_1
Thread_2 AFA_fc_1 AFAR_fc_1
Thread_3 AFA_fc_1 AFAR_fc_1
Thread_4 AFA_fc_1 AFAR_fc_1

Table 4 Features: asserted individuals

2.3.1.6 Asserted Artifact Individuals and Properties

An assembly can be composed of several Parts and the simple enumeration of them is represented
through the properties artifactHasPart_direct. The class ArtifactAssociation and its subclasses
(FixedConnection and MovableConnection) are used to represente the relationship between the parts
that are connected for creating an Assembly.

For instance, as an individual of Assembly, Input_Axial_Assembly consists of the parts
Input_Bearing_1, Input_Bearing_2 and Input_Shaft. This information does not provide any
information on the relation between these parts. However, the individual of the class
MovableConnection mc_2 represents the real assembly configuration. In this way it is possible to fully
represent the Input_Axial_Assembly structure.

The asserted individuals and properties are listed in Table 5. For every individual the subclass of
pertinence is specified through the name (fc: FixedConnection; mc: MovableConneciton)

 Asserted Properties
ArtifactAssociation Individuals ArtifactAssociation2Part

fc_1 screw_1
fc_1 screw_2
fc_1 screw_3
fc_1 screw_4
fc_1 Lower_Housing
fc_1 Lower_Housing
fc_1 Lower_Housing
fc_1 Lower_Housing

fc_1 Upper_Housing
fc_1 Upper_Housing
fc_1 Upper_Housing
fc_1 Upper_Housing
fc_2 Input_Bearing_1
fc_2 Lower_Housing
fc_3 Input_Bearing_2
fc_3 Lower_Housing
fc_4 Output_Bearing_1
fc_4 Lower_Housing
fc_5 Output_Bearing_2
fc_5 Lower_Housing
fc_6 Output_Key
fc_6 Output_Shaft
fc_7 Output_Gear
fc_7 Output_Key
mc_1 Input_Shaft
mc_1 Output_Gear
mc_2 Input_Shaft
mc_2 Input_Bearing_1
mc_2 Input_Shaft
mc_2 Input_Bearing_2
mc_3 Output_Shaft
mc_3 Output_Bearing_1
mc_3 Output_Shaft
mc_3 Output_Bearing_2

Table 5 ArtifactAssociation: asserted individuals and properties

2.3.1.7 Asserted AssemblyFeatureAssociation Individuals and Properties

 Asserted Properties
AFA Individuals AFA2AFAR AFA2Feature

AFA_fc_1

AFAR_fc_1

Threaded_Hole_1
Threaded_Hole_2
Threaded_Hole_3
Threaded_Hole_4

Thru_Hole_1
Thru_Hole_2
Thru_Hole_3
Thru_Hole_4

Thread_1
Thread_2
Thread_3
Thread_4

AFA_fc_2 AFAR_fc_2
Input_Outer_Race_1

Input_Bearing_Seat_3

AFA_fc_3 AFAR_fc_3
Input_Outer_Race-2

Input_Bearing_Seat_4

AFA_fc_4 AFAR_fc_4
Output_Outer_Race_1

Output_Bearing_Seat_3

AFA_fc_5 AFAR_fc_5
Output_Outer_Race_2

Output_Bearing_Seat_4

AFA_fc_6 AFAR_fc_6
Output_Key_Side_1
Output_Shaft_Side

AFA_fc_7 AFAR_fc_7
Output_Key_Side_2
Output_Gear_Side

AFA_mc_1 AFAR_mc_1
Input_Gear-Teeth

Output_Gear-Teeth

AFA_mc_2

AFAR_mc_2

Input_Inner_Race_1
Input_Inner_Race_2

Input_Bearing_Seat_1
Input_Bearing_Seat_2

AFA_mc_3

AFAR_mc_3

Output_Inner_Race_1
Output_Inner_Race_2

Output_Bearing_Seat_1
Output_Bearing_Seat_2

Table 6 AssemblyFeatureAssociation: asserted individuals and properties

The AssemblyFeatureAssociation class has the same aim of ArtifactAssociation but at the feature
level. If two parts are connected through an individual of ArtifactAssociation then two Features of
these parts have to be connected through an individual of AssemblyFeatureAssociation. This class has
two properties AFA2Feature and AFA2AFAR. The property AFA2Feature has the similar function as
ArtifactAssociation2Part and links at least two Features realizing an assembly constituted of two parts.
The property AFA2AFAR links the individuals of AssemblyFeatureAssociation with
AssemblyFeatureAssociationRepresentation. The AssemblyFeatureAssociationRepresentation
class is used to connect the Feature with several classes used in tolerances and geometric
representations. The asserted individuals and properties are shown in Table 6.

2.3.1.8 Asserted AssemblyFeatureAssociationRepresentation Individuals and Properties

 Asserted Properties Asserted Properties
AFAR individuals AFAR2AFA AFAR individuals AFAR2AFA

AFAR_fc_1 AFA_fc_1 AFAR_fc_6 AFA_fc_6
AFAR_fc_2 AFA_fc_2 AFAR_fc_7 AFA_fc_7
AFAR_fc_3 AFA_fc_3 AFAR_mc_1 AFA_mc_1
AFAR_fc_4 AFA_fc_4 AFAR_mc_2 AFA_mc_2
AFAR_fc_5 AFA_fc_5 AFAR_mc_3 AFA_mc_3
Table 7 AssemblyFeatureAssociationRepresentation: asserted individuals and properties

2.3.2 Protégé-OWL Implementation

After all the preparatory work done in the previous section, it is now quite convenient and clear to
assert required classes, properties and individuals with Protégé.

Open Protégé 3.4 Beta, Create New Project and choose OWL/RDF Files option. Save the project as
“ReductionGearbox.owl”.

2.3.2.1 Create Classes Hierarchy

Click on the orange OWL Classes tab to shift focus on the classes definition. In the SUBCLASS
EXPLORER pane to the left side, click on “create subclass” to create class Artifact. Notice the
first class is created as a subclass of the root class owl:Thing, and all the classes are thus the subclasses
of this root class. Now class “Artifact” is highlighted, click on “create sibling class” , to create
another class “ArtifactAssociation”, which is at the same level as Artifact . Make Artifact
highlighted again by clicking on it, create subclasses Assembly, Meaningless_Artifact and Part. Then
create subclasses FixedConnection and MovableConnection for ArtifactAssociation. Repeat the
similar process and create class Feature, class AssemblyFeatureAssociation with subclasses
AFA_FixedConnection and AFA_MovableConnection, and class
AssemblyFeatureAssociationRepresentation with subclasses AFAR_FixedConnection and
AFAR_MovableConnection.The overall class hierarchy is shown in Figure 7.

Figure 7 Class Hierarchy for Reduction Gearbox Assembly

2.3.2.2 Create Properties

Click on the blue Properties Tab, under the object subtab of PROPERTY BROWSER pane on the left
side, click on icon “create object property ” , rename the first property artifactHasPart_direct, by
inputing the desired name after # sign in the “For Property” box of the PROPERTY EDITOR. Then use
the same approach to create properties partOfArtifact_direct, artifactHasFeature, featureOfArtifact,
part2ArtifactAssociation, artifactAssociation2Part, feature2AFA, AFA2Feature, AFA2AFAR,

AFAR2AFA, feature2AFAR.

The two important restrictions on properties are Domain and Range. Take artifactHasPart_direct as an
example, click on “specialize domain” in the Domain Pane and the dialog box “Select named
class(es) to add” will pop out. Now we can choose Artifact from the classes tree and hit OK to set
artifact as the domain for property artifactHasPart_direct. Similarly, it is easy to define the Range for
the property as well. The dialog box and the final status after this setting is shown in Figure 8.

Figure 8 Set Domain and Range for Properties

Another point worth noticing is the inverse relationship between two properties. Only from the literal
level can we find that artifactHasPart_direct and partOfArtifact_direct are inverse properties, which
means if the individual of Class A has the individual of Class B as direct part, then an individual of
Class B must be direct part of the individual of Class A. Clearly, the Domain for artifactHasPart_direct
is the Range of partOfArtifact_direct and Range for artifactHasPart_direct is the Domain of
partOfArtifact_direct. To represent this relation in Protégé, click on “Select Inverse Property” , and
select partOfArtifact_direct from the classes tree. After confirmation, we can see that on the
PROPERTY BROWSER pane, these two features are followed by a two-head arrow and the name of
the other property respectively. Repeat the similar steps for defining inverse relationships and Domain
Range characteristics and properties window will take on the look as demonstrated by Figure 9,
Domain and Range options should be obtained by the information in previous tables .

Figure 9 Inverse Relationship and Property list

2.3.2.3 Create Individuals

Move on to the Individuals Tab and click on the “creat instance” icon under the INSTANCE
BROWSER pane. For example, select the subclass Part, and create the 14 individuals prescribed in
Table. After each individual of Part is created, we are able to see the property box that are attached to
this class. For Part, the software system provides space for us to define the value of artifactHasFeature,
part2ArtifactAssociation and partOfArtifact_direct. Based on Table 3, we can easily determine the
property values for each inviduals of Part. Other individuals of all the classes in this ontology require
the same work to determine the property values, which can be done based on corresponding tables
offered earlier. Figure 10 gives the overall look of the individuals tab and the specific situation for the
individual Lower_Housing.

Figure 10 Individuals of Reduction Gearbox ontology

2.3.2.4 Ontology Exploration

Choose Project>Configure and check “OWL Viz Tab” under Tab Widgets in the dialog box. OWL Viz
Tab will show up. Use the show class hierarchy function to get the following clear structure of the
gearbox ontology as shown in Figure 11.

Figure 11 OWL-Viz Plugin Function showing class hierarchy

2.3.3 Reasoning by Protégé and Racer

Racer is package that can help perform reasoning for an ontology in order to find any possible
inconsistencies and fallacies within the system. This report use RacerPro 1.92 to conduct the analysis.
Launch RacerPorter 1.92, if valid license file is placed correctly, Racer will be open and give the
following prompt:

* ? Automatically connected to RacerPro 1.9.2 running on localhost:8088 (case: preserve)

* > (:OKAY "RacerPro 1.9.2 running on localhost:8088 (case: preserve)")

Now press “load” button under Profiles tab and choose the ReductionGearbox.owl ontology file to load
the owl-ontology file successfully. This software gives a more detailed description of inner relations
between the elements of the ontology. Figure 12 shows the Taxonomy plot.

Figure 12 RacerPro Interface

2.3.3.1 Inferred Individuals and Properties

After reasoning process, the output individuals of each class will be presented.

(1) Inferred Assembly Properties

Now the class Assembly is not empty anymore, see Table 8.

Table 8 Assembly inferred properties

(2) Inferred Meaningless_Artifact Individuals

Now after the reasoning, Meaningless_Artifact class is no longer empty. Two individuals of the class
Artifact are reclassified as not well defined. There are Input_Axial_Assembly and
Reduction_Gearbox_Assembly. As expected, the individual (Input_Axial_Assembly) with a self
reference (inadmissible in assembly representation) is reclassified as element of this class. Also note
the Reduction_Gearbox_Assembly is reclassified to this class since the inadmissible
Input_Axial_Assembly is a sub-assembly of the Reduction_Gearbox_Assembly.

(3) Inferred ArtifactAssociation Properties

 Inferred Properties
ArtifactAssociation Individual artifactAssociation ArtifactAssociation2AFA

fc_1 Reduction_Gearbox_Assembly AFA_fc_1
fc_2 Reduction_Gearbox_Assembly AFA_fc_2
fc_3 Reduction_Gearbox_Assembly AFA_fc_3
fc_4 Reduction_Gearbox_Assembly AFA_fc_4
fc_5 Reduction_Gearbox_Assembly AFA_fc_5

 Inferred Assembly Properties
Assembly Individuals artifactHasPart assembly2ArtifactAssociation

Input_Axial_Assembly
Input_Bearing_1
Input_Bearing_1

Input_Shaft

fc_2
fc_3
mc_1
mc_2

Input_Axial_Assembly

Output_Bearing-1
Output_Bearing-1

Output_Shaft
Output_Gear
Output_Key

fc_4
fc_5
fc_6
fc_7
mc_3

Reduction Gearbox Assembly

Input_Bearing_1
Input_Bearing_2

Input_Shaft
Output_Bearing_1
Output_Bearing_2

Output_Shaft
Output_Gear
Output_Key

Lower_Housing
Upper_Housing

Screw_1
Screw_2
Screw_3
Screw_4

fc_1
fc_2
fc_3
fc_4
fc_5
mc_1

fc_6 Output_Axial_Assembly AFA_fc_6
fc_7 Output_Axial_Assembly AFA_fc_7
mc_1 Reduction_Gearbox_Assembly AFA_mc_1
mc_2 Input_Axial_Assembly AFA_mc_2
mc_3 Output_Axial_Assembly AFA_mc_3

Table 9 ArtifactAssociation: inferred properties

(4) Inferred AssemblyFeatureAssociation Properties

 Inferred Properties
AFA Individuals AssemblyFeatureAssociation2ArtifactAssociation

AFA_fc_1 AFAR_fc_1
AFA_fc_2 AFAR_fc_2
AFA_fc_3 AFAR_fc_3
AFA_fc_4 AFAR_fc_4
AFA_fc_5 AFAR_fc_5
AFA_fc_6 AFAR_fc_6
AFA_fc_7 AFAR_fc_7
AFA_mc_1 AFAR_mc_1
AFA_mc_2 AFAR_mc_2
AFA_mc_3 AFAR_mc_3

Table 10 AssemblyFeatureAssociation: inferred properties

(5) Inferred AssemblyFeatureAssociationRepresentation Properties

Asserted Properties
AFA2AFAR AFA2Feature

AFAR_fc_1

Threaded_Hole_1
Threaded_Hole_2
Threaded_Hole_3
Threaded_Hole_4

Thru_Hole_1
Thru_Hole_2
Thru_Hole_3
Thru_Hole_4

Thread_1
Thread_2
Thread_3
Thread_4

AFAR_fc_2
Input_Outer_Race_1

Input_Bearing_Seat_3

AFAR_fc_3
Input_Outer_Race-2

Input_Bearing_Seat_4

AFAR_fc_4
Output_Outer_Race_1

Output_Bearing_Seat_3

AFAR_fc_5
Output_Outer_Race_2

Output_Bearing_Seat_4

AFAR_fc_6
Output_Key_Side_1
Output_Shaft_Side

AFAR_fc_7
Output_Key_Side_2
Output_Gear_Side

AFAR_mc_1
Input_Gear-Teeth

Output_Gear-Teeth

AFAR_mc_2

Input_Inner_Race_1
Input_Inner_Race_2

Input_Bearing_Seat_1
Input_Bearing_Seat_2

AFAR_mc_3

Output_Inner_Race_1
Output_Inner_Race_2

Output_Bearing_Seat_1
Output_Bearing_Seat_2

Table 11 AssemblyFeatureAssociationRepresentation: inferred properties

3. Conclusion

In this project, we have successfully built an ontology to represent an assembly of a reduction gearbox
by using Protégé-OWL. The inside structure of the part assembly relationships become extremely clear
and can be drawn upon on for future study; this is exactly the most important advantage of ontology
approach in manufacturing and product development field. Even if the interoperability between
different systems is growing, the current PLM solutions are inefficient while screening data clustered in
companies. This necessitates a need for a data analysis system. This scenario is due to the inherent
drawback with the commonly used approaches, to give any sort of meaning to the stored data to help
systems to understand/react immediately to the kind of information saved in a particular cluster. This
problem is present in any entity that collects great quantity of data. Generally every entity has good
knowledge of the kind of data in manages. However, this knowledge can be become complex if we
refer to different subjects of a supply chain or to a set of divisions or facilities trying to share data in a
PLM context. The aim of this work i.e., the development of OWL ontology for the assembly model fits
the above mentioned scenario. The underlying reasons for the creation of the OWL of the assembly are:
1) A standard data structure developed directly in a Web-oriented language such as OWL: this assures
the highest level of compatibility and diffusion; 2) New reasoning capabilities offered by the
ontological approach: OWL is developed with the intent of supporting the growth of the Semantic Web
and offers the possibility to give to the data structure not only a format but a meaning intelligible by a
computer. This allows the machines to reason this ontology to deduct knowledge and more information
from the stored data. The proposed OWL aims to address a data representation model for
interoperability between software platforms with a capability of sharing meaningful stored data.

