Toward patient-specific computational study of aortic diseases: a population based shape modeling approach

Kang Li ¹ Xiaoping Qian² Caitlin Martin³ Wei Sun³

¹ Illinois Institute of Technology

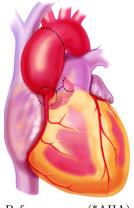
² University of Wisconsin - Madison

³ Georgia Institute of Technology

August 19, IDETC 2014

- Research motivation
- Statistical Shape Modeling approach
- Training set data preparation
- 4 Statistical model result and mode analysis
- 5 Conclusion

Traditional treatment: surgery

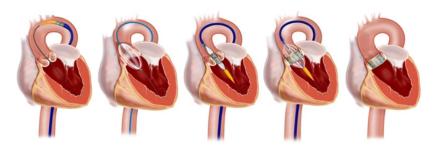


Before surgery (*AHA)

2/20

After surgery

- Cardiac aneurysm treated by prosthetic graft
- High risks for elderly and with concomitant issues

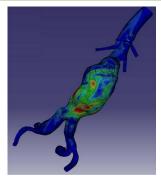


TAVR procedure (*Raney Zusman Medical Group)

- Transcatheter Aortic Valve Replacement (TAVR)
- Much lower risks than surgical replacement
- Challenge: success s.t. aorta biomechanics device shape, size, position and orientation etc.

Biomedical simulations

Fluid pressure (* Hazer, CMU)



Mechanical stress

- Numerical simulations: fast and inexpensive (FEM, CFD)
- Accuracy s.t. geometric modeling of aorta from CT/MRI
- Challenge: patient-specific geometric modeling of aorta time-consuming process, noisy and incomplete data

Patient data pool. e.g. femur

SSM: mean + modes

- Promising solution: Statistical Shape Model (SSM)
 - Shape variation pattern in a population of shapes
 - SSM (mean + modes): a compact representation
- Patient-specific model easily constructed from SSM

Population based statistical shape modeling

- Formulated as an optimization problem
- Description length of statistical model defined by

$$f \doteq \sum_{m=1}^{n_S - 1} L_m,$$

where each mode's contribution is

$$L_m = \begin{cases} 1 + \log(\lambda_m/\lambda_{\text{cut}}) & \lambda_m \ge \lambda_{\text{cut}} \\ \lambda_m/\lambda_{\text{cut}} & \text{otherwise} \end{cases}$$

Optimization formulation

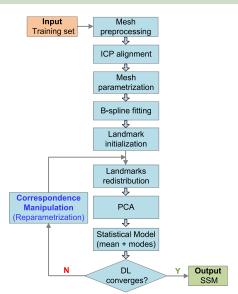
$$\min_{\mathbf{b}} f(\mathbf{b}) = \sum_{\lambda_k > \lambda_{\text{out}}} \left[1 + \log \frac{\lambda_k(\mathbf{b})}{\lambda_{\text{cut}}} \right] + \sum_{\lambda_k < \lambda_{\text{cut}}} \frac{\lambda_k(\mathbf{b})}{\lambda_{\text{cut}}}$$
(1a)

s.t.
$$\mathbf{E}(\mathbf{b}) \mathbf{v}_k(\mathbf{b}) = \lambda_i(\mathbf{b}) \mathbf{v}_k(\mathbf{b})$$
 (1b)

$$\mathbf{v}_k^T(\mathbf{b})\mathbf{v}_k(\mathbf{b}) = 1, \quad k = 1, ..., n_S$$
 (1c)

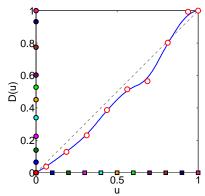
$$g(\mathbf{b}) < 0 \tag{1d}$$

Aorta statistical shape modeling flowchart



Aorta SSM **IDETC 2014** Kang Li et al.

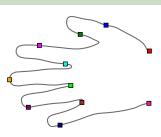
B-spline controlled landmarks manipulation



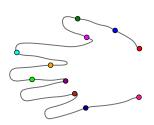
Reparametrization function D(u)

Represented by B-spline

$$D(u) = \sum_{i=0}^{n_b - 1} B_{i,p}(u)b_i$$

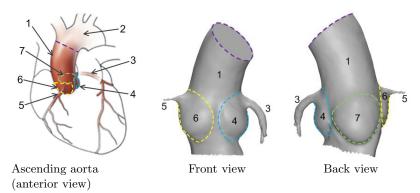


Before redistribution



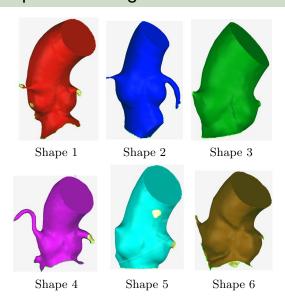
After redistribution

Aorta anatomy



- 1) Ascending aorta; 2) Aortic arch;
- 3) Left coronary artery; 5) Right coronary artery;
- 4) Left coronary sinus; 6) Right coronary sinus;
 - 7) Non-coronary sinus

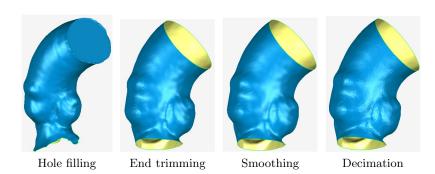
Input raw triangle meshes



Shape	Patient	Sex	Age
1	Α	М	44
2	В	М	42
3	С	М	59
4	D	М	37
5	E	М	45
6	F	М	49

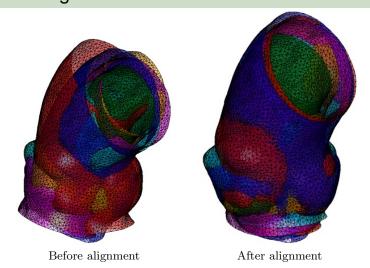
- From CT images
- 6 patients
- Patient C with severe aneurysm

Mesh processing



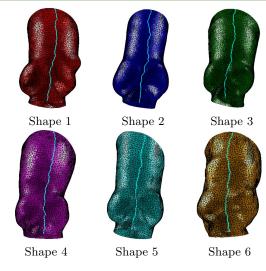
- Incomplete and/or noisy data
- Shape topology

One-time alignment



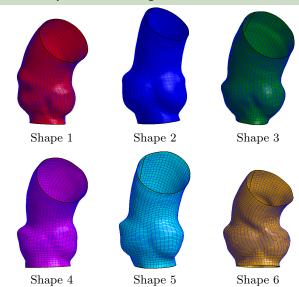
Iterative Closest Point algorithm

Generatrix construction

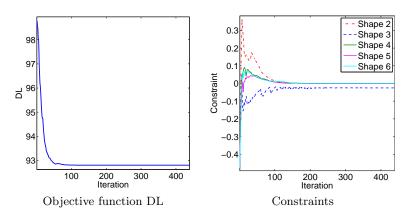


Consistent cylindrical topology

Training set B-splines fitting



Optimization results



- Objective (DL) drops from 98.77 to 92.80 in 439 iterations
- Optimized mode variations $\lambda_1 = 2.06, \lambda_2 = 0.44, \lambda_3 = 0.38, \lambda_4 = 0.21, \lambda_5 = 0.11$

SSM result: mode 1

Mode variation:

$$\lambda_1 = 2.06 \ (64.5\%)$$

Standard deviation: $\Sigma_m = \sqrt{\lambda_m} \quad (m = 1, ..., 5)$

Captured variation pattern: Ascending aorta dilation

SSM result: mode 2

Mode variation: $\lambda_2 = 0.44 (13.8\%)$

- Accumulative percentage $\lambda_1 \& \lambda_2 = 78.3\%$
- Captured variation patterns: Ascending aorta dilation **Coronary sinus dilation**

SSM result: mode 3

- Mode variation: $\lambda_3 = 0.38 \, (11.8\%)$
- Accumulative percentage $\lambda_1 \& \lambda_2 \& \lambda_3 = 90.1\%$
- Captured variation patterns: Ascending aorta dilation Coronary sinus dilation **Annulus dilation**

Patient-specific modeling from SSM

Problem statement

- ▶ Input 1: SSM = mean $\bar{\mathbf{x}}$ + modes $\{\mathbf{v}_m\}$
- Input 2: any patient shape data Spatient
- ▶ Output: Patient specific model $\mathbf{x}_{\text{Patient}} = \bar{\mathbf{x}} + \sum_{m=1}^{\bar{m}} \beta_m \mathbf{v}_m$
- ▶ Find $\{\beta_m\}$ s.t. $\mathbf{x}_{\mathsf{Patient}}$ sufficiently represents $\mathbf{S}_{\mathsf{Patient}}$

Viable methods

- ▶ Direct projection $\mathbf{x} \approx \beta_m = (\mathbf{x} \bar{\mathbf{x}})^T \mathbf{v}_m$
- Shape fitting, e.g. ICP etc.

Advantages

- More efficient, more convenient
- Less risky, less costly
- Less subject to incomplete data and/or feature noise

Conclusion

- Biomedical simulation: promising alternative to aorta surgeries
 - Advantage: much lower risks
 - Challenge: patient-specific geometric modeling of aorta
- Proposed solution: population based statistical shape modeling
 - Characterizes shape variation patterns in a set of shapes
 - Formulated as a optimization problem
 - Aorta variation across patients captured by statistical modes
 - Easy construction of patient-specific aortic model
- Future work
 - More complex topology
 - Larger population of aorta